16 resultados para THERMAL ENVIRONMENT

em Indian Institute of Science - Bangalore - Índia


Relevância:

100.00% 100.00%

Publicador:

Resumo:

This lecture describes some recent attempts at unravelling the mechanics of the temperature distribution near ground, especially during calm, clear nights. In particular, a resolution is offered of the so-called Ramdas paradox, connected with observations of a temperature minimum some decimetres above bare soil on calm clear nights, in apparent defiance of the Rayleigh criterion for instability due to thermal convection. The dynamics of the associated temperature distribution is governed by radiative and convective transport and by thermal conduction, and is characterised by two time constants, involving respectively quick radiative adjustments and slow diffusive relaxation. The theory underlying the work described here suggests that surface parameters like ground emissivity and soil thermal conductivity can exert appreciable influence on the development of nocturnal inversions.

Relevância:

70.00% 70.00%

Publicador:

Resumo:

A controlled laboratory experiment was carried out on forty Indian male college students for evaluating the effect of indoor thermal environment on occupants' response and thermal comfort. During experiment, indoor temperature varied from 21 degrees C to 33 degrees C, and the variables like relative humidity, airflow, air temperature and radiant temperature were recorded along with skin (T-sk) and oral temperature (T-core) from the subjects. From T-sk and T-c, body temperature (T-b) was evaluated. Subjective Thermal Sensation Vote (TSV) was recorded using ASHRAE 7-point scale. In PMV model, Fanger's T-sk equation was used to accommodate adaptive response. Stepwise regression analysis result showed T-b was better predictor of TSV than T-sk and T-core. Regional skin temperature response, lower sweat threshold temperature with no dipping sweat and higher cutaneous sweating threshold temperature were observed as thermal adaptive responses. Using PMV model, thermal comfort zone was evaluated as (22.46-25.41) degrees C with neutral temperature of 23.91 degrees C, whereas using TSV response, wider comfort zone was estimated as (23.25-2632) degrees C with neutral temperature at 24.83 degrees C. It was observed that PMV-model overestimated the actual thermal response. Interestingly, these subjects were found to be less sensitive to hot but more sensitive to cold. A new TSV-PPD relation (PPDnew) was obtained with an asymmetric distribution of hot-cold thermal sensation response in Indians. (C) 2013 Elsevier Ltd. All rights reserved.

Relevância:

70.00% 70.00%

Publicador:

Resumo:

A controlled laboratory experiment was carried out on forty Indian male college students for evaluating the effect of indoor thermal environment on occupants' response and thermal comfort. During experiment, indoor temperature varied from 21 degrees C to 33 degrees C, and the variables like relative humidity, airflow, air temperature and radiant temperature were recorded along with subject's physiological parameters (skin (T-sk) and oral temperature (T-c)) and subjective thermal sensation responses (TSV). From T-sk and T-c, body temperature (T-b) was evaluated. Subjective Thermal Sensation Vote (TSV) was recorded using ASHRAE 7-point scale. In PMV model, Fanger's T-sk equation was used to accommodate adaptive response. Step-wise regression analysis result showed T-b was better predictor of TSV than T-sk and T-c. Regional skin temperature response, suppressed sweating without dipping, lower sweating threshold temperature and higher cutaneous threshold for sweating were observed as thermal adaptive responses. These adaptive responses cannot be considered in PMV model. To incorporate subjective adaptive response, mean skin temperature (T-sk) is considered in dry heat loss calculation. Along with these, PMV-model and other two methodologies are adopted to calculate PMV values and results are compared. However, recent literature is limited to measure the sweat rate in Indians and consideration of constant Ersw in PMV model needs to be corrected. Using measured T-sk in PMV model (Method(1)), thermal comfort zone corresponding to 0.5 <= PMV <= 0.5 was evaluated as (22.46-25.41) degrees C with neutral temperature of 23.91 degrees C, similarly while using TSV response, wider comfort zone was estimated as (23.25-26.32) degrees C with neutral temperature at 24.83 degrees C, which was further increased to with TSV-PPDnew, relation. It was observed that PMV-model overestimated the actual thermal response. Interestingly, these subjects were found to be less sensitive to hot but more sensitive to cold. A new TSV-PPD relation (PPDnew) was obtained from the population distribution of TSV response with an asymmetric distribution of hot-cold thermal sensation response from Indians. The calculations of human thermal stress according to steady state energy balance models used on PMV model seem to be inadequate to evaluate human thermal sensation of Indians. Relevance to industry: The purpose of this paper is to estimate thermal comfort zone and optimum temperature for Indians. It also highlights that PMV model seems to be inadequate to evaluate subjective thermal perception in Indians. These results can be used in feedback control of HVAC systems in residential and industrial buildings. (C) 2014 Elsevier B.V. All rights reserved.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

An important problem regarding pin joints in a thermal environment is addressed. The motivation emerges from structural safety requirements in nuclear and aerospace engineering. A two-dimensional model of a smooth, rigid misfit pin in a large isotropic sheet is considered as an abstraction. The sheet is subjected to a biaxial stress system and far-field unidirectional heat flow. The thermoelastic analysis is complex due to non-linear load-dependent contact and separation conditions at the pin-hole interface and the absence of existence and uniqueness theorems for the class of frictionless thermoelastic contact problems. Identification of relevant parameters and appropriate synthesis of thermal and mechanical variables enables the thermomechanical generalization of pin-joint behaviour. This paper then proceeds to explore the possibility of multiple solutions in such problems, especially interface contact configuration.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

The understanding of thermoelastic behaviour of joints is significant in order to ensure the integrity of large and complex structures exposed to a thermal environment, particularly in fields such as aerospace and nuclear engineering. Thermomechanical generalization of partial contact behaviour of a pin joint under combined in-plane mechanical loading and on-axis unidirectional heat flow has already been established by the authors for the analytically simpler domains of large plates. This paper successfully extends the on-going investigation to a single pin in a finite rectangular isotropic plate as a two-dimensional abstraction from a practical situation of a multipin fastener joint. The finite element method is used to analyse the joint problem under on-axis thermomechanical loading and unified load-contact relationships are established for a class of loading conditions.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

In this paper, the thermal effects on the ultrasonic wave propagation characteristics of a nanoplate are studied based on the nonlocal continuum theory. The nonlocal governing equations are derived for the nanoplate under thermal environment. The axial stress caused by the thermal effects is considered. The wave propagation analysis is carried out using spectral analysis. The influences of the nonlocal small scale coefficient, the room or low temperature, the high temperature and the axial half wave numbers on the wave dispersion properties of nanoplate are also discussed. Numerical results show that the small scale effects and the thermal effects are significant for larger half wavenumbers. The results are qualitatively different from those obtained based on the local plate theory and thus, are important for the development of graphene-based nanodevices such as strain sensor, mass and pressure sensors, atomic dust detectors, and enhancer of surface image resolution. (C) 2011 Elsevier Ltd. All rights reserved.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

A conformationally locked tetraacetate undergoes, quite akin to a temperature-guided molecular switch, a reversible thermal switching between two polymorphic modifications; the room-temperature alpha-form converted at -4 degrees C to a low-temperature denser beta-form, which displayed an unusual kinetic stability till 67 degrees C and transformed back to the alpha-form beyond this temperature.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Thermal contact conductance (TCC) measurements are made on bare and gold plated (<= 0.5 mu m) oxygen free high conductivity (OFHC) Cu and brass contacts in vacuum, nitrogen, and argon environments. It is observed that the TCC in gaseous environment is significantly higher than that in vacuum due to the enhanced thermal gap conductance. It is found that for a given contact load and gas pressure, the thermal gap conductance for bare OFHC Cu contacts is higher than that for gold plated contacts. It is due to the difference in the molecular weights of copper and gold, which influences the exchange of kinetic energy between the gas molecules and contact surfaces. Furthermore, the gap conductance is found to increase with increasing thickness of gold plating. Topography measurements and scanning electron microscopy (SEM) analysis of contact surfaces revealed that surfaces become smoother with increasing gold plating thickness, thus resulting in smaller gaps and consequently higher gap conductance. (C) 2010 Elsevier Ltd. All rights reserved.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Hydrazinium metal chlorides, (N2H5)2MCl4·2H2O (where M = Fe, Co, Ni and Cu), have been prepared from the aqueous solutions of the respective metal chlorides and hydrazine hydrochloride (N2H4·HCl or N2H4·2HCl) and investigated by spectral and thermal analyses. The crystal structure of the iron complex has been determined by direct methods and refined by full-matrix least-squares to an R of 0.023 and Rw of 0.031 for 1495 independent reflections. The structure shows ferrous ion in an octahedral environment bonded by two hydrazinium cations, two chloride anions and two water molecules. In the complex cation [Fe(N2H5)2(H2O)2Cl2]2+, the coordinated groups are in trans positions.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Extended X-ray absorption fine structure (EXAFS) spectroscopy is applied to an investigation of the structural environment around Zn in polycrystalline K2ZnCi4 over the temperature range associated with its solid-to-solid phase transformations at 127 degrees C and 282 degrees C. The results show a reversible increase in thermal disorder and in the tetrahedral distortion of the ZnCl42- anion upon transformation into the incommensurate phase.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Serine hydroxymethyltransferase (SHMT), EC 2.1.2.1, exhibits broad substrate and reaction specificity. In addition to cleaving many 3-hydroxyamino acids to glycine and an aldehyde, the enzyme also catalyzed the decarboxylation, transamination and racemization of several substrate analogues of amino acids. To elucidate the mechanism of interaction of substrates, especially L-serine with the enzyme, a comparative study of interaction of L-serine with the enzyme from sheep liver and Escherichia coli, was carried out. The heat stability of both the enzymes was enhanced in the presence of serine, although to different extents. Thermal denaturation monitored by spectral changes indicated an alteration in the apparent T, of sheep liver and E. coli SHMTs from 55 +/- 1 degrees C to 72 +/- 3 degrees C at 40 mM serine and from 67 +/- 1 degrees C to 72 +/- 1 degrees C at 20 mM serine, respectively. Using stopped flow spectrophotometry k values of (49 +/- 5)(.)10(-3) s(-1) and (69 +/- 7).10(-3) s(-1) for sheep liver and E. coli enzymes were determined at 50 mM serine. The binding of serine monitored by intrinsic fluorescence and sedimentation velocity measurements indicated that there was no generalized change in the structure of both proteins. However, visible CD measurements indicated a change in the asymmetric environment of pyridoxal 5'-phosphate at the active site upon binding of serine to both the enzymes. The formation of an external aldimine was accompanied by a change in the secondary structure of the enzymes monitored by far UV-CD spectra. Titration microcalorimetric studies in the presence of serine (8 mM) also demonstrated a single class of binding and the conformational changes accompanying the binding of serine to the enzyme resulted in a more compact structure leading to increased thermal stability of the enzyme.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Transient thermal sensitivity is studied for systems that are subjected to conductive heat transfer within themselves and radiative heat transfer with the surrounding environment, including solar heat radiation, The battery in the Indian national communication satellite is one such system for which the studies are conducted with respect to panel conduction, conductance of insulating blanket, power dissipation within the battery, and absorptance and emittance of various elements, Comparison of sensitivities revealed that battery temperature is sensitive to its power dissipation during the beginning of life of the spacecraft, whereas toward the end of life of the spacecraft mission, the effect of absorptance of optical solar reflector is dominating, The influence of optical property values of the multilayer insulation blanket is almost negligible. Among the parameters studied in this analysis, the battery temperature is found to be mast sensitive to emittance of the optical solar reflector.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

In this article, we describe our ongoing efforts in addressing the environment and energy challenges facing the world today. Tapping solar thermal energy seems to be the right choice for a country like India. We look at three solar-thermal technologies in the laboratory — water purification/distillation, Stirling engine, and air-conditioning/refrigeration.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Further miniaturization of magnetic and electronic devices demands thin films of advanced nanomaterials with unique properties. Spinel ferrites have been studied extensively owing to their interesting magnetic and electrical properties coupled with stability against oxidation. Being an important ferrospinel, zinc ferrite has wide applications in the biological (MRI) and electronics (RF-CMOS) arenas. The performance of an oxide like ZnFe2O4 depends on stoichiometry (defect structure), and technological applications require thin films of high density, low porosity and controlled microstructure, which depend on the preparation process. While there are many methods for the synthesis of polycrystalline ZnFe2O4 powder, few methods exist for the deposition of its thin films, where prolonged processing at elevated temperature is not required. We report a novel, microwave-assisted, low temperature (<100°C) deposition process that is conducted in the liquid medium, developed for obtaining high quality, polycrystalline ZnFe2O4 thin films on technologically important substrates like Si(100). An environment-friendly solvent (ethanol) and non-hazardous oxide precursors (β-diketonates of Zn and Fe in 1:2 molar ratio), forming a solution together, is subjected to irradiation in a domestic microwave oven (2.45 GHz) for a few minutes, leading to reactions which result in the deposition of ZnFe2O4 films on Si (100) substrates suspended in the solution. Selected surfactants added to the reactant solution in optimum concentration can be used to control film microstructure. The nominal temperature of the irradiated solution, i.e., film deposition temperature, seldom exceeds 100°C, thus sharply lowering the thermal budget. Surface roughness and uniformity of large area depositions (50x50 mm2) are controlled by tweaking the concentration of the mother solution. Thickness of the films thus grown on Si (100) within 5 min of microwave irradiation can be as high as several microns. The present process, not requiring a vacuum system, carries a very low thermal budget and, together with a proper choice of solvents, is compatible with CMOS integration. This novel solution-based process for depositing highly resistive, adherent, smooth ferrimagnetic films on Si (100) is promising to RF engineers for the fabrication of passive circuit components. It is readily extended to a wide variety of functional oxide films.