117 resultados para Local concrete damage model

em Indian Institute of Science - Bangalore - Índia


Relevância:

100.00% 100.00%

Publicador:

Resumo:

The paper proposes two methodologies for damage identification from measured natural frequencies of a contiguously damaged reinforced concrete beam, idealised with distributed damage model. The first method identifies damage from Iso-Eigen-Value-Change contours, plotted between pairs of different frequencies. The performance of the method is checked for a wide variation of damage positions and extents. The method is also extended to a discrete structure in the form of a five-storied shear building and the simplicity of the method is demonstrated. The second method is through smeared damage model, where the damage is assumed constant for different segments of the beam and the lengths and centres of these segments are the known inputs. First-order perturbation method is used to derive the relevant expressions. Both these methods are based on distributed damage models and have been checked with experimental program on simply supported reinforced concrete beams, subjected to different stages of symmetric and un-symmetric damages. The results of the experiments are encouraging and show that both the methods can be adopted together in a damage identification scenario.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

The present study experimentally evaluates the performance of control (standard cylinder specimen), damaged (mechanical loading after thermal exposure) and repaired / retrofitted normal plain concrete cylinders using different repair schemes such as on use of FRP wraps, Geo-polymers, etc., to restore the capacity of damaged structural concrete elements. The control-companion specimen in the series provides the reference frame against which both, specimen damage levels were quantified and the benefits of a specimen repaired subsequent to damage were assessed.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

This paper deals with modeling of the first damage mode, matrix micro-cracking, in helicopter rotor/wind turbine blades and how this effects the overall cross-sectional stiffness. The helicopter/wind turbine rotor system operates in a highly dynamic and unsteady environment leading to severe vibratory loads present in the system. Repeated exposure to this loading condition can induce damage in the composite rotor blades. These rotor/turbine blades are generally made of fiber-reinforced laminated composites and exhibit various competing modes of damage such as matrix micro-cracking, delamination, and fiber breakage. There is a need to study the behavior of the composite rotor system under various key damage modes in composite materials for developing Structural Health Monitoring (SHM) system. Each blade is modeled as a beam based on geometrically non-linear 3-D elasticity theory. Each blade thus splits into 2-D analyzes of cross-sections and non-linear 1-D analyzes along the beam reference curves. Two different tools are used here for complete 3-D analysis: VABS for 2-D cross-sectional analysis and GEBT for 1-D beam analysis. The physically-based failure models for matrix in compression and tension loading are used in the present work. Matrix cracking is detected using two failure criterion: Matrix Failure in Compression and Matrix Failure in Tension which are based on the recovered field. A strain variable is set which drives the damage variable for matrix cracking and this damage variable is used to estimate the reduced cross-sectional stiffness. The matrix micro-cracking is performed in two different approaches: (i) Element-wise, and (ii) Node-wise. The procedure presented in this paper is implemented in VABS as matrix micro-cracking modeling module. Three examples are presented to investigate the matrix failure model which illustrate the effect of matrix cracking on cross-sectional stiffness by varying the applied cyclic

Relevância:

100.00% 100.00%

Publicador:

Resumo:

A micropolar cohesive damage model for delamination of composites is proposed. The main idea is to embed micropolarity, which brings an additional layer of kinematics through the micro-rotation degrees of freedom within a continuum model to account for the micro-structural effects during delamination. The resulting cohesive model, describing the modified traction separation law, includes micro-rotational jumps in addition to displacement jumps across the interface. The incorporation of micro-rotation requires the model to be supplemented with physically relevant material length scale parameters, whose effects during delamination of modes I and II are brought forth using numerical simulations appropriately supported by experimental evidences. (C) 2015 Elsevier Ltd. All rights reserved.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

The paper presents the results of a computational modeling for damage identification process for an axial rod representing an end-bearing pile foundation with known damage and a simply supported beam representing a bridge girder. The paper proposes a methodology for damage identification from measured natural frequencies of a contiguously damaged reinforced concrete axial rod and beam, idealized with distributed damage model. Identification of damage is from Equal_Eigen_value_change (Iso_Eigen_value_Change) contours, plotted between pairs of different frequencies. The performance of the method is checked for a wide variation of damage positions and extents. An experiment conducted on a free-free axially loaded reinforced concrete member and a flexural beam is shown as examples to prove the pros and cons of this method. (C) 2009 Elsevier Ltd. All rights reserved.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Wavelet coefficients based on spatial wavelets are used as damage indicators to identify the damage location as well as the size of the damage in a laminated composite beam with localized matrix cracks. A finite element model of the composite beam is used in conjunction with a matrix crack based damage model to simulate the damaged composite beam structure. The modes of vibration of the beam are analyzed using the wavelet transform in order to identify the location and the extent of the damage by sensing the local perturbations at the damage locations. The location of the damage is identified by a sudden change in spatial distribution of wavelet coefficients. Monte Carlo Simulations (MCS) are used to investigate the effect of ply level uncertainty in composite material properties such as ply longitudinal stiffness, transverse stiffness, shear modulus and Poisson's ratio on damage detection parameter, wavelet coefficient. In this study, numerical simulations are done for single and multiple damage cases. It is observed that spatial wavelets can be used as a reliable damage detection tool for composite beams with localized matrix cracks which can result from low velocity impact damage.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

The demand for tunnelling and underground space creation is rapidly growing due to the requirement of civil infrastructure projects and urbanisation. Blasting remains the most inexpensive method of underground excavations in hard rock. Unfortunately, there are no specific safety guidelines available for the blasted tunnels with regards to the threshold limits of vibrations caused by repeated blasting activity in the close proximity. This paper presents the results of a comprehensive study conducted to find out the effect of repeated blast loading on the damage experienced by jointed basaltic rock mass during tunnelling works. Conducting of multiple rounds of blasts for various civil excavations in a railway tunnel imparted repeated loading on rock mass of sidewall and roof of the tunnel. The blast induced damage was assessed by using vibration attenuation equations of charge weight scaling law and measured by borehole extensometers and borehole camera. Ground vibrations of each blasting round were also monitored by triaxial geophones installed near the borehole extensometers. The peak particle velocity (V-max) observations and plastic deformations from borehole extensometers were used to develop a site specific damage model. The study reveals that repeated dynamic loading imparted on the exposed tunnel from subsequent blasts, in the vicinity, resulted in rock mass damage at lesser vibration levels than the critical peak particle velocity (V-cr). It was found that, the repeated blast loading resulted in the near-field damage due to high frequency waves and far-field damage due to low frequency waves. The far field damage, after 45-50 occurrences of blast loading, was up to 55% of the near-field damage in basaltic rock mass. The findings of the study clearly indicate that the phenomena of repeated blasting with respect to number of cycles of loading should be taken into consideration for proper assessment of blast induced damage in underground excavations.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

A health-monitoring and life-estimation strategy for composite rotor blades is developed in this work. The cross-sectional stiffness reduction obtained by physics-based models is expressed as a function of the life of the structure using a recent phenomenological damage model. This stiffness reduction is further used to study the behavior of measurable system parameters such as blade deflections, loads, and strains of a composite rotor blade in static analysis and forward flight. The simulated measurements are obtained using an aeroelastic analysis of the composite rotor blade based on the finite element in space and time with physics-based damage modes that are then linked to the life consumption of the blade. The model-based measurements are contaminated with noise to simulate real data. Genetic fuzzy systems are developed for global online prediction of physical damage and life consumption using displacement- and force-based measurement deviations between damaged and undamaged conditions. Furthermore, local online prediction of physical damage and life consumption is done using strains measured along the blade length. It is observed that the life consumption in the matrix-cracking zone is about 12-15% and life consumption in debonding/delamination zone is about 45-55% of the total life of the blade. It is also observed that the success rate of the genetic fuzzy systems depends upon the number of measurements, type of measurements and training, and the testing noise level. The genetic fuzzy systems work quite well with noisy data and are recommended for online structural health monitoring of composite helicopter rotor blades.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

In the current state of the art, it remains an open problem to detect damage with partial ultrasonic scan data and with measurements at coarser spatial scale when the location of damage is not known. In the present paper, a recent development of finite element based model reduction scheme in frequency domain that employs master degrees of freedom covering the surface scan region of interests is reported in context of non-contact ultrasonic guided wave based inspection. The surface scan region of interest is grouped into master and slave degrees of freedom. A finite element wise damage factor is derived which represents damage state over distributed areas or sharp condition of inter-element boundaries (for crack). Laser Doppler Vibrometer (LDV) scan data obtained from plate type structure with inaccessible surface line crack are considered along with the developed reduced order damage model to analyze the extent of scan data dimensional reduction. The proposed technique has useful application in problems where non-contact monitoring of complex structural parts are extremely important and at the same time LDV scan has to be done on accessible surfaces only.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

One characteristic feature of the athermal beta -> omega transformation is the short time scale of the transformation. So far, no clear understanding of this issue exists. Here we construct a model that includes contributions from a Landau sixth-order free energy density, kinetic energy due to displacement, and the Rayleigh dissipation function to account for the dissipation arising from the rapid movement of the parent product interface during rapid nucleation. We also include the contribution from omega-like fluctuations to local stress. The model shows that the transformation is complete on a time scale comparable to the velocity of sound. The estimated nucleation rate is several orders higher than that for diffusion-controlled transformations. The model predicts that the athermal omega phase is limited to a certain range of alloying composition. The estimated nucleation rate and the size of ``isothermal'' particles beyond 17% Nb are also consistent with experimental results. The model provides an explanation for the reprecipitation process of the omega particles in the ``cleared'' channels formed during deformation of omega-forming alloys. The model also predicts that acoustic emission should be detectable during the formation of the athermal phase. (C) 2011 Acta Materialia Inc. Published by Elsevier Ltd. All rights reserved.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Linear quadratic stabilizers are well-known for their superior control capabilities when compared to the conventional lead-lag power system stabilizers. However, they have not seen much of practical importance as the state variables are generally not measurable; especially the generator rotor angle measurement is not available in most of the power plants. Full state feedback controllers require feedback of other machine states in a multi-machine power system and necessitate block diagonal structure constraints for decentralized implementation. This paper investigates the design of Linear Quadratic Power System Stabilizers using a recently proposed modified Heffron-Phillip's model. This model is derived by taking the secondary bus voltage of the step-up transformer as reference instead of the infinite bus. The state variables of this model can be obtained by local measurements. This model allows a coordinated linear quadratic control design in multi machine systems. The performance of the proposed controller has been evaluated on two widely used multi-machine power systems, 4 generator 10 bus and 10 generator 39 bus systems. It has been observed that the performance of the proposed controller is superior to that of the conventional Power System Stabilizers (PSS) over a wide range of operating and system conditions.

Relevância:

50.00% 50.00%

Publicador:

Resumo:

A closed-form expression for the dual of dissipation potential is derived within the framework of irreversible thermodynamics using the principles of dimensional analysis and self-similarity. Through this potential, a damage evolution law is proposed for concrete under fatigue loading using the concepts of damage mechanics in conjunction with fracture mechanics. The proposed law is used to compute damage in a volume element when a member is subjected to fatigue loading. The evolution of damage from microcracking to macrocracking of the entire member is captured through a series of volume elements failing one after the other. The number of loading cycles to failure of the member is obtained as the summation of number of cycles to failure for each individual volume element. A parametric study is conducted to determine the effect of the size of the volume element on the model's prediction of fatigue life. A global damage index is also defined, and the residual moment carrying capacity of damaged beams is evaluated. Through a deterministic sensitivity analysis, it is found that the load range and maximum aggregate size are the most influencing parameters on the fatigue life of a plain concrete beam.

Relevância:

40.00% 40.00%

Publicador:

Resumo:

Notched three-point bend specimens (TPB) were tested under crack mouth opening displacement (CMOD) control at a rate of 0.0004 mm/s and the entire fracture process was simulated using a regular triangular two-dimensional lattice network only over the expected fracture proces zone width. The rest of the beam specimen was discretised by a coarse triangular finite element mesh. The discrete grain structure of the concrete was generated assuming the grains to be spherical. The load versus CMOD plots thus simulated agreed reasonably well with the experimental results. Moreover, acoustic emission (AE) hits were recorded during the test and compared with the number of fractured lattice elements. It was found that the cumulative AE hits correlated well with the cumulative fractured lattice elements at all load levels thus providing a useful means for predicting when the micro-cracks form during the fracturing process, both in the pre-peak and in the post-peak regimes.

Relevância:

40.00% 40.00%

Publicador:

Resumo:

Ductility based design of reinforced concrete structures implicitly assumes certain damage under the action of a design basis earthquake. The damage undergone by a structure needs to be quantified, so as to assess the post-seismic reparability and functionality of the structure. The paper presents an analytical method of quantification and location of seismic damage, through system identification methods. It may be noted that soft ground storied buildings are the major casualties in any earthquake and hence the example structure is a soft or weak first storied one, whose seismic response and temporal variation of damage are computed using a non-linear dynamic analysis program (IDARC) and compared with a normal structure. Time period based damage identification model is used and suitably calibrated with classic damage models. Regenerated stiffness of the three degrees of freedom model (for the three storied frame) is used to locate the damage, both on-line as well as after the seismic event. Multi resolution analysis using wavelets is also used for localized damage identification for soft storey columns.