65 resultados para LATERAL SEPTAL AREA
em Indian Institute of Science - Bangalore - Índia
Resumo:
In this study, we present the spontaneous self-assembly of designed simplest aromatic cyclic dipeptides of (L-Phg-L-Phg) and (D-Phg-L-Phg) to form highly stable two-dimensional (2D) nano- and mesosheets with large lateral surface area. Various microscopy data revealed that the morphology of 2D mesosheets resembles the hierarchical natural materials with layered structure. Solution and solid-state NMR studies on cyclo(L-Phg-L-Phg) revealed the presence of strong (N-H-O) hydrogen-bonded molecular chains supported by aromatic pi-pi interactions to form 2D mesosheets. Interestingly, cyclo(D-Phg-L-Phg) self-assembles to form single-crystalline as well as non-crystalline 2D rhomboid sheets with large lateral dimension. X-ray diffraction analysis revealed the stacking of (N-H-O) hydrogen-bonded molecular layers along c-axis supported by aromatic pi-pi interactions. The thermogravimetric analysis shows two transitions with overall high thermal stability attributed to layered hierarchy found in 2D mesosheets.
Resumo:
The subiculum, considered to be the output structure of the hippocampus, modulates information flow from the hippocampus to various cortical and sub-cortical areas such as the nucleus accumbens, lateral septal region, thalamus, nucleus gelatinosus, medial nucleus and mammillary nuclei. Tonic inhibitory current plays an important role in neuronal physiology and pathophysiology by modulating the electrophysiological properties of neurons. While the alterations of various electrical properties due to tonic inhibition have been studied in neurons from different regions, its influence on intrinsic subthreshold resonance in pyramidal excitatory neurons expressing hyperpolarization-activated cyclic nucleotide-gated (HCN) channels is not known. Using pharmacological agents, we show the involvement of alpha 5 beta gamma GABA(A) receptors in the picrotoxin-sensitive tonic current in subicular pyramidal neurons. We further investigated the contribution of tonic conductance in regulating subthreshold electrophysiological properties using current clamp and dynamic clamp experiments. We demonstrate that tonic GABAergic inhibition can actively modulate subthreshold properties, including resonance due to HCN channels, which can potentially alter the response dynamics of subicular pyramidal neurons in an oscillating neuronal network.
Resumo:
Restricted area heterojunctions, an array of lead sulfide colloidal quantum dots (PbS-CQDs) and crystalline silicon, are studied with a non-destructive remote contact light beam induced current (RC-LBIC) technique. As well as getting good quality active area images we observed an anomalous unipolar signal response for the PbS-CQD/n-Si devices and a conventionally expected bipolar signal profile for the PbS-CQD/p-Si devices. Interestingly, our simulation results consistently yielded a unipolar and bipolar nature in the signals related to the PbSCQD/n-Si and PbS-CQD/p-Si heterostructures, respectively. In order to explain the physical mechanism involved in the unipolar signal response of the PbS-CQD/n-Si devices, we propose a model based on the band alignment in the heterojunctions, in addition to the distribution of photo-induced excess majority carriers across the junction. Given that the RC-LBIC technique is well suited to this context, the presence of these two distinct mechanisms (the bipolar and unipolar nature of the signals) needs to be considered in order to have a better interpretation of the data in the characterization of an array of homo/heterojunctions.
Resumo:
1 Species-accumulation curves for woody plants were calculated in three tropical forests, based on fully mapped 50-ha plots in wet, old-growth forest in Peninsular Malaysia, in moist, old-growth forest in central Panama, and in dry, previously logged forest in southern India. A total of 610 000 stems were identified to species and mapped to < Im accuracy. Mean species number and stem number were calculated in quadrats as small as 5 m x 5 m to as large as 1000 m x 500 m, for a variety of stem sizes above 10 mm in diameter. Species-area curves were generated by plotting species number as a function of quadrat size; species-individual curves were generated from the same data, but using stem number as the independent variable rather than area. 2 Species-area curves had different forms for stems of different diameters, but species-individual curves were nearly independent of diameter class. With < 10(4) stems, species-individual curves were concave downward on log-log plots, with curves from different forests diverging, but beyond about 104 stems, the log-log curves became nearly linear, with all three sites having a similar slope. This indicates an asymptotic difference in richness between forests: the Malaysian site had 2.7 times as many species as Panama, which in turn was 3.3 times as rich as India. 3 Other details of the species-accumulation relationship were remarkably similar between the three sites. Rectangular quadrats had 5-27% more species than square quadrats of the same area, with longer and narrower quadrats increasingly diverse. Random samples of stems drawn from the entire 50 ha had 10-30% more species than square quadrats with the same number of stems. At both Pasoh and BCI, but not Mudumalai. species richness was slightly higher among intermediate-sized stems (50-100mm in diameter) than in either smaller or larger sizes, These patterns reflect aggregated distributions of individual species, plus weak density-dependent forces that tend to smooth the species abundance distribution and 'loosen' aggregations as stems grow. 4 The results provide support for the view that within each tree community, many species have their abundance and distribution guided more by random drift than deterministic interactions. The drift model predicts that the species-accumulation curve will have a declining slope on a log-log plot, reaching a slope of O.1 in about 50 ha. No other model of community structure can make such a precise prediction. 5 The results demonstrate that diversity studies based on different stem diameters can be compared by sampling identical numbers of stems. Moreover, they indicate that stem counts < 1000 in tropical forests will underestimate the percentage difference in species richness between two diverse sites. Fortunately, standard diversity indices (Fisher's sc, Shannon-Wiener) captured diversity differences in small stem samples more effectively than raw species richness, but both were sample size dependent. Two nonparametric richness estimators (Chao. jackknife) performed poorly, greatly underestimating true species richness.
Resumo:
Nanoporous structures with high active surface areas are critical for a variety of applications. Here, we present a general templateless strategy to produce such porous structures by controlled aggregation of nanostructured subunits and apply the principles for synthesizing nanoporous Pt for electrocatalytic oxidation of methanol. The nature of the aggregate produced is controlled by tuning the electrostatic interaction between surfactant-free nanoparticles in the solution phase. When the repulsive force between the particles is very large, the particles are stabilized in the solution while instantaneous aggregation leading to fractal-like structures results when the repulsive force is very low. Controlling the repulsive interaction to an optimum, intermediate value results in the formation of compact structures with very large surface areas. In the case of Pt, nanoporous clusters with an extremely high specific surface area (39 m(2)/g) and high activity for methanol oxidation have been produced. Preliminary investigations indicate that the method is general and can be easily extended to produce nanoporous structures of many inorganic materials.
Resumo:
Fluctuation of field emission current from carbon nanotubes (CNTs) poses certain difficulties for their use in nanobiomedical X-ray devices and imaging probes. This problem arises due to deformation of the CNTs due to electrodynamic force field and electron-phonon interaction. It is of great importance to have precise control of emitted electron beams very near the CNT tips. In this paper, a new array configuration with stacked array of CNTs is analysed and it is shown that the current density distribution is greatly localised at the middle of the array, that the scatter due to electrodynamic force field is minimised and that the temperature transients are much smaller compared to those in an array with random height distribution.
Resumo:
This paper is concerned with the integration of voice and data on an experimental local area network used by the School of Automation, of the Indian Institute of Science. SALAN (School of Automation Local Area Network) consists of a number of microprocessor-based communication nodes linked to a shared coaxial cable transmission medium. The communication nodes handle the various low-level functions associated with computer communication, and interface user data equipment to the network. SALAN at present provides a file transfer facility between an Intel Series III microcomputer development system and a Texas Instruments Model 990/4 microcomputer system. Further, a packet voice communication system has also been implemented on SALAN. The various aspects of the design and implementation of the above two utilities are discussed.
Resumo:
Cooking efficiency and related fuel economy issues have been studied in a particular rural area of India. Following a description of the cooking practices and conditions in this locale, cooking efficiency is examined. A cooking efficiency of only 6% was found. The use of aluminium rather than clay pots results in an increased efficiency. In addition, cooking efficiency correlates very well with specific fuel consumption. The latter parameter is much simpler to analyse than cooking efficiency. The energy losses during cooking are examined in the second part of this case study. The major energy losses are heating of excess air, heat carried away by the combustion products, heat transmitted to the stove body and floor, and the chemical energy in charcoal residue. The energy loss due to the evaporation of cooking water is also significant because it represents about one-third of the heat reaching the pots.
Resumo:
Interfacial area measurement has been carried out experimentally by measuring the bubble size and holdup for air-sodium chloride solution system. The size of the bubble is predominantly established by the air hold up. High speed photography technique for bubble size measurement and gamma ray attenuation method for holdup measurements are followed. The measured values are compared with the theoretically predicted values. Interracial area as a function of the liquid flow rate and also its distance from the nozzle of the ejector has been reported in this paper. The results obtained for this non-reactive system are also compared with those of air-water system.
Resumo:
In this paper, we present an approach to estimate fractal complexity of discrete time signal waveforms based on computation of area bounded by sample points of the signal at different time resolutions. The slope of best straight line fit to the graph of log(A(rk)A / rk(2)) versus log(l/rk) is estimated, where A(rk) is the area computed at different time resolutions and rk time resolutions at which the area have been computed. The slope quantifies complexity of the signal and it is taken as an estimate of the fractal dimension (FD). The proposed approach is used to estimate the fractal dimension of parametric fractal signals with known fractal dimensions and the method has given accurate results. The estimation accuracy of the method is compared with that of Higuchi's and Sevcik's methods. The proposed method has given more accurate results when compared with that of Sevcik's method and the results are comparable to that of the Higuchi's method. The practical application of the complexity measure in detecting change in complexity of signals is discussed using real sleep electroencephalogram recordings from eight different subjects. The FD-based approach has shown good performance in discriminating different stages of sleep.
Resumo:
In this paper the implementation and application of a microprocessor-based medium speed experimental local area network using a coaxial cable transmission medium are dealt with. A separate unidirectional control wire has been used in order to provide a collision-free and fair medium access arbitration. As an application of the network, the design of a packet voice communication system is discussed.
Resumo:
Excised shoot tips of Cuscuta reflexa Roxb. (dodder), a rootless and leafless angiospermic plant parasite, were cultured in vitro for the study of the control of lateral bud development by the apex. In a chemically defined medium lacking hormones, the basal bud alone developed into a shoot. The addition of coconut milk to the growth medium induced the activation of multiple lateral buds, but only a single bud developed further into a shoot. The decapitation of this shoot induced the development of another shoot and the process could be repeated. This showed the controlling effect of the apex in correlative control of bud development. Application of indole-3-acetic acid to the shoot tip explant delayed the development of the lateral bud. Gibberellic acid A3 induced a marked elongation growth of the explant and reinforced apical dominance. The direct application of cytokinin to an inhibited bud relieved it from apical dominance. A basipetally decreasing concentration gradient of auxin may prevail at the nodes. Bud outgrowth is probably stimulated by cytokinin produced locally in the bud.
Resumo:
In this paper, two new dual-path based area efficient loop filtercircuits are proposed for Charge Pump Phase Locked Loop (CPPLL). The proposed circuits were designed in 0.25 CSM analog process with 1.8V supply. The proposed circuits achievedup to 85% savings in capacitor area. Simulations showed goodmatch of the new circuits with the conventional circuit. Theproposed circuits are particularly useful in applications thatdemand low die area.
Resumo:
The presence of an inert immiscible organic phase in gas�liquid dispersions in stirred vessels influences the interfacial area in a more complex fashion than hitherto reported. As the organic phase fraction is increased, the interfacial area expressed on the basis of a unit volume of dispersion or aqueous phase, first increases, passes through a maximum and then decreases. This trend is observed irrespective of whether the area is determined by chemical means or by physical method. It is found that for low values of inert phase fraction, the average bubble size decreases whereas the gas holdup increases, resulting in increased interfacial area. The lower average bubble size is found to be due to partial prevention of coalescence as the bubbles size generated in the impeller region actually increases with the organic phase fraction. The actual values of interfacial areas depend on the nature of the organic phase. It is also found that the organic phase provides a parallel path for mass transfer to occur, when the solubility of gas in it is high.
Resumo:
Bearing area analysis has been used to study the real area of contact and compliance of rough turned steel cylinders in compression. Calculations show that the elastic real area of contact is very small compared to the plastic real area of contact, and that local compliance due to flattening of asperity tips is a small proportion of the total compliance obtained from experiments. The fact that increased load brings more and more new asperities under load rather than enlarging the contact spots leads to a rather simple load-compliance relation for a rough cylinder, viz., W' = Nh · K1δn, where W0 = K1δn defines the load-compliance relation of the individual asperities, and Nh represents the number of asperities bearing the load.