270 resultados para HETEROEPITAXIAL GROWTH
em Indian Institute of Science - Bangalore - Índia
Novel derivatives of spirohydantoin induce growth inhibition followed by apoptosis in leukemia cells
Resumo:
Hydantoin derivatives possess a variety of biochemical and pharmacological properties and consequently are used to treat many human diseases. However, there are only few studies focusing on their potential as cancer therapeutic agents. In the present study, we have examined anticancer properties of two novel spirohydantoin compounds, 8-(3,4-difluorobenzyl)-1'-(pent-4-enyl)-8-azaspiro[bicyclo[3.2.1] octane-3,4'-imidazolidine]-2',5'-dione (DFH) and 8-(3,4-dichlorobenzyl)-1'-(pent-4-enyl)-8-azaspiro[bicyclo[3.2.1]octane-3,4'-imidazolidine]-2',5'-dione (DCH). Both the compounds exhibited dose- and time-dependent cytotoxic effect on human leukemic cell lines, K562, Reh, CEM and 8ES. Incorporation of tritiated thymidine ([H-3) thymidine) in conjunction with cell cycle analysis suggested that DFH and DCH inhibited the growth of leukemic cells. Downregulation of PCNA and p-histone H3 further confirm that the growth inhibition could be at the level of DNA replication. Flow cytometric analysis indicated the accumulation of cells at subG1 phase suggesting induction of apoptosis, which was further confirmed and quantified both by fluorescence-activated cell sorting (FACS) and confocal microscopy following annexin V-FITC/propidium iodide (PI) staining. Mechanistically, our data support the induction of apoptosis by activation of the mitochondrial pathway. Results supporting such a model include, elevated levels of p53, and BAD, decreased level of BCL2, activation and cleavage of caspase 9, activation of procaspase 3, poly (ADP-ribosyl) polymerase (PARP) cleavage, downregulation of Ku70, Ku80 and DNA fragmentation. Based on these results we discuss the mechanism of apoptosis induced by DFH and its implications in leukemia therapy. (C) 2008 Elsevier Inc. All rights reserved.
Resumo:
The growth of Thiobacillus ferrooxidans, their attachment to sulfide minerals and detachment during bacterial leaching are discussed in this paper. Growth of the bacteria has been measured by cell count of the supernatants of the mineral suspensions while attachment to minerals and detachment were measured by periodic protein estimations for both the solid and liquid phases, Even in the absence of the nutrients, bacterial growth occurs and increases the available cell population during leaching; such growth was greater in sphalerite suspensions than in galena suspensions, The bacterial attachment studies suggest that more cells are attached onto galena mineral surface than to sphalerite surface. The mechanisms of bacterial attachment and detachment are discussed.
Resumo:
Abstract: We report the growth and the electron cyclotron resonance measurements of n-type Si/Si0.62Ge0.38 and Si0.94Ge0.06/Si0.62Ge0.38 modulation-doped heterostructures grown by rapid thermal chemical vapor deposition. The strained Si and Si0.94Ge0.06 channels were grown on relaxed Si0.62Ge0.38 buffer layers, which consist of 0.6 mu m uniform Si0.62Ge0.38 layers and 0.5 mu m compositionally graded relaxed SiGe layers from 0 to 38% Ge. The buffer layers were annealed at 800 degrees C for 1 h to obtain complete relaxation. A 75 Angstrom Si(SiGe) channel with a 100 Angstrom spacer and a 300 Angstrom 2 X 10(19) cm(-3) n-type supply layer was grown on the top of the buffer layers. The cross-sectional transmission electron microscope reveals that the dense dislocation network is confined to the buffer layer, and relatively few dislocations terminate on the surface. The plan-view image indicates the threading dislocation density is about 4 X 10(6) cm(-2). The far-infrared measurements of electron cyclotron resonance were performed at 4 K with the magnetic field of 4-8 T. The effective masses determined from the slope of the center frequency of the absorption peak versus applied magnetic field plot are 0.203m(0) and 0.193m(0) for the two dimensional electron gases in the Si and Si0.94Ge0.06 channels, respectively. The Si effective mass is very close to that of a two dimensional electron gas in an Si MOSFET (0.198m(0)). The electron effective mass of Si0.94Ge0.06 is reported for the first time and is about 5% lower than that of pure Si.
Resumo:
Modeling and analysis of wave propagation in elastic solids undergoing damage and growth process are reported in this paper. Two types of diagnostic problems, (1) the propagation of waves in the presence of a slow growth process and (2) the propagation of waves in the presence of a fast growth process, are considered. The proposed model employs a slow and a fast time scale and a homogenization technique in the wavelength scale. A detailed analysis of wave dispersion is carried out. A spectral analysis reveals certain low-frequency bands, where the interaction between the wave and the growth process produces acoustic metamaterial-like behavior. Various practical issues in designing an efficient method of acousto-ultrasonic wave based diagnostics of the growth process are discussed. Diagnostics of isotropic damage in a ductile or quasi-brittle solid by using a micro-second pulsating signal is considered for computer simulations, which is to illustrate the practical application of the proposed modeling and analysis. The simulated results explain how an estimate of signal spreading can be effectively employed to detect the presence of a steady-state damage or the saturation of a process.
Resumo:
There are essentially two different phenomenological models available to describe the interdiffusion process in binary systems in the olid state. The first of these, which is used more frequently, is based on the theory of flux partitioning. The second model, developed much more recently, uses the theory of dissociation and reaction. Although the theory of flux partitioning has been widely used, we found that this theory does not account for the mobility of both species and therefore is not suitable for use in most interdiffusion systems. We have first modified this theory to take into account the mobility of both species and then further extended it to develop relations or the integrated diffusion coefficient and the ratio of diffusivities of the species. The versatility of these two different models is examined in the Co-Si system with respect to different end-member compositions. From our analysis, we found that the applicability of the theory of flux partitioning is rather limited but the theory of dissociation and reaction can be used in any binary system.
Resumo:
Treatment of WISH (human amnion) cells with interferon-gamma (IFN-gamma) inhibits their growth. Release of the cells from IFN-gamma-mediated growth inhibition led to a rapid and significant increase in DNA synthesis, followed by doubling of cell numbers. The DNA synthesis profile was strikingly similar to that shown by WISH cells released from growth arrest by the G(1)/S phase inhibitor, aphidicolin, This strongly suggested that IFN-gamma treatment leads to growth inhibition of WISH cells at the G(1)/S boundary of the cell cycle. In contrast, IFN-alpha blocked growth of these cells at the G(0)/G(1) boundary.
Resumo:
Good quality single crystals of copper metagermanite, CuGeO3, are grown by flux technique. Growth is carried out at relatively low temperatures by using Bi2O3 along with CuO in an optimal flux ratio. Besides rendering the procedure simple, lower growth temperature reduces growth defect concentration. Single crystals of Cu1 - xCoxGeO3 and CuGe1 - yGayO3 are grown by the same method for different values of x and y to investigate the influence of in-chain and off-chain doping on spin-Peierls (SP) transition. Change in color, morphology and surface features as a result of doping are briefly discussed. Spin-Peierls transition of these crystals is studied by susceptibility measurements on a commercial SQUID magnetometer. Cationic substitution resulted in reduction of spin-Peierls transition temperature (T-SP) of CuGeO3. Substitution of magnetic impurity cobalt in-chain site caused more pronounced effects such as suppression of SP phase.
Resumo:
Polycrystalline films of SrBi2Nb2O9 were grown using pulsed-laser ablation. The ferroelectric properties were achieved by low-temperature deposition followed by a subsequent annealing process. The lower switching voltage was obtained by lowering the thickness, which did not affect the insulating nature of the films. The hysteresis results showed an excellent square-shaped loop with results (P-r=6 mu C/cm(2), E-c=100 kV/cm) in good agreement with earlier reports. The films also exhibited a dielectric constant of 250 and a dissipation factor of 0.02. The transport studies indicated an ohmic behavior, while higher voltages induced a bulk space charge.
Resumo:
Antiferroelectric lead zirconate (PZ) thin films were deposited by pulsed laser ablation on platinum-coated silicon substrates. Films showed a polycrystalline pervoskite structure upon annealing at 650 degrees C for 5-10 min. Dielectric properties were investigated as a function of temperature and frequency. The dielectric constant of PZ films was 220 at 100 kHz with a dissipation factor of 0.03. The electric field induced transformation from the antiferroelectric phase to the ferroelectric phase was observed through the polarization change, using a Sawyer-Tower circuit. The maximum polarization value obtained was 40 mu C/cm(2). The average fields to excite the ferroelectric state, and to reverse to the antiferroelectric state were 71 and 140 kV/cm, respectively. The field induced switching was also observed through double maxima in capacitance-voltage characteristics. Leakage current was studied in terms of current versus time and current versus voltage measurements. A leakage current density of 5x10(-7) A/cm(2) at 3 V, for a film of 0.7 mu m thickness, was noted at room temperature. The trap mechanism was investigated in detail in lead zirconate thin films based upon a space charge limited conduction mechanism. The films showed a backward switching time of less than 90 ns at room temperature.
Resumo:
The confusion over the growth rate of the Nb3Sn superconductor compound following the bronze technique is addressed. Furthermore, a possible explanation for the corrugated structure of the product phase in the multifilamentary structure is discussed. Kirkendall marker experiments are conducted to study the relative mobilities of the species, which also explains the reason for finding pores in the product phase layer. The movement of the markers after interdiffusion reflects that Sn is the faster diffusing species. Furthermore, different concentrations of Sn in the bronze alloy are considered to study the effect of Sn content on the growth rate. Based on the parabolic growth constant at different temperatures, the activation energy for the growth is determined.
Resumo:
The nucleataon growth model of electrochemical phase formation is analysed for the hnear potential sweep input Apart from deducing diagnostic criteria and method~ of estimating model parameters, the predictions of the nucleation growth model are compared and contrasted with those of a sample adsorption model A dastlnCtlOn is made possible between adsorption and phase transition, which seems useful for understanding the nature of ECPF phenomena, especially underpotentlal deposition (UPD).
Resumo:
Near threshold fatigue crack growth behavior of a high strength steel under different temper levels was investigated. It is found that the observed variations in ΔKth could predominantly be attributed to roughness induced crack closure. The closure-free component of the threshold stress intensity range, ΔKeff,th showed a systematic variation with monotonic yield strength.
Resumo:
Crystal growth of YIG from fluxes containing lead sulphate in place of lead oxide in the usual lead oxide-lead fluoride-boron oxide flux system has been tried. Lead sulphate decomposes during crystal growth giving lead oxide and sulphur trioxide. Due to the influence of sulphur trioxide in the system the yield of crystals almost doubles. There is no change either in the morphology of the crystals or their lattice parameter. It is possible that solubility of YIG is different in the new flux and the changed solubility causes the increase in yield of crystals.
Resumo:
En 52 steel has been electroslag refined and the resultant effects of refining on its mechanical properties have been assessed. It was found that refining caused a decrease in fatigue crack growth rates and increases in fatigue strength, fracture toughness, Charpy fracture energy and tensile ductility. Fatigue crack growth rates in region I and in region III were found to be considerably lower in the electroslag refined steel: they were unaffected in region II. The fracture toughness values for the electroslag refined steel are nearly twice those estimated for the unrefined steel. Measurements on heat-treated samples have shown that the electroslag refined steel has a better response to heat-treatment. The improvement in the mechanical properties is explained in terms of the removal of nonmetallic inclusions and a reduction in the sulphur content of the steel.
Resumo:
The occurrence of a maximum in the percentage of intergranular fracture on the fracture surface during the transition from intermediate to low fatigue crack growth rates has been observed for a high strength steel. It is suggested that transgranular planar slip leading to slip localization is essential in promoting intergranular fracture when the cyclic plastic zone size becomes equal to the prior austenite grain size.