170 resultados para FUEL CYCLE CENTERS

em Indian Institute of Science - Bangalore - Índia


Relevância:

80.00% 80.00%

Publicador:

Resumo:

Nano sized copper chromite, which is used as a burn rate accelerator for solid propellants, was synthesized by the solution combustion process using citric acid and glycine as fuel. Pure spinel phase copper chromite (CuCr2O4) was synthesized, and the effect of different ratios of Cu-Cr ions in the initial reactant and various calcination temperatures on the final properties of the material were examined. The reaction time for the synthesis with glycine was lower compared to that with citric acid. The synthesized samples from both fuel cycles were characterized by X-ray diffraction (XRD), X-ray photoelectron spectroscopy (XPS), BET surface area analysis, and scanning electron microscope (SEM). Commercial copper chromite that is currently used in solid propellant formulation was also characterized by the same techniques. XRD analysis shows that the pure spinel phase compound is formed by calcination at 700 degrees C for glycine fuel cycle and between 750 and 800 degrees C for citric acid cycle. XPS results indicate the variation of the oxidation state of copper in the final compound with a change in the Cu-Cr mole ratio. SEM images confirm the formation of nano size spherical shape particles. The variation of BET surface area with calcination temperature was studied for the solution combusted catalyst. Burn rate evaluation of synthesized catalyst was carried out and compared with the commercial catalyst. The comparison between BET surface area and the burn rate depicts that surface area difference caused the variation in burn rate between samples. The reason behind the reduction in surface area and the required modifications in the process are also described.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

In this second of the two-part study, the results of the Tank-to-Wheels study reported in the first part are combined with Well-to-Tank results in this paper to provide a comprehensive Well-to-Wheels energy consumption and greenhouse gas emissions evaluation of automotive fuels in India. The results indicate that liquid fuels derived from petroleum have Well-to-Tank efficiencies in the range of 75-85% with liquefied petroleum gas being the most efficient fuel in the Well-to-Tank stage with 85% efficiency. Electricity has the lowest efficiency of 20% which is mainly attributed due to its dependence on coal and 25.4% losses during transmission and distribution. The complete Well-to-Wheels results show diesel vehicles to be the most efficient among all configurations, specifically the diesel-powered split hybrid electric vehicle. Hydrogen engine configurations are the least efficient due to low efficiency of production of hydrogen from natural gas. Hybridizing electric vehicles reduces the Well-to-Wheels greenhouse gas emissions substantially with split hybrid configuration being the most efficient. Electric vehicles do not offer any significant improvement over gasoline-powered configurations; however a shift towards renewable sources for power generation and reduction in losses during transmission and distribution can make it a feasible option in the future. (C) 2015 Elsevier Ltd. All rights reserved.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Treatment of WISH (human amnion) cells with interferon-gamma (IFN-gamma) inhibits their growth. Release of the cells from IFN-gamma-mediated growth inhibition led to a rapid and significant increase in DNA synthesis, followed by doubling of cell numbers. The DNA synthesis profile was strikingly similar to that shown by WISH cells released from growth arrest by the G(1)/S phase inhibitor, aphidicolin, This strongly suggested that IFN-gamma treatment leads to growth inhibition of WISH cells at the G(1)/S boundary of the cell cycle. In contrast, IFN-alpha blocked growth of these cells at the G(0)/G(1) boundary.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Total strain controlled low cycle fatigue tests on 316L(N) stainless steel have been conducted in air at various strain rates in the temperature range of 773-873 K to identify the operative time-dependent mechanisms and to understand their influence on the cyclic deformation and fracture behaviour of the alloy. The cyclic stress response at all the testing conditions was marked by an initial hardening followed by stress saturation. A negative strain rate stress response is observed under specific testing conditions which is attributed to dynamic strain ageing (DSA). Transmission electron microscopy studies reveal that there is an increase in the dislocation density and enhanced slip planarity in the DSA regime. Fatigue life is found to decrease with a decrease in strain rate. The degradation in fatigue resistance is attributed to the detrimental effects associated with DSA and oxidation. Quantitative measurement of secondary cracks indicate that both transgranular and intergranular cracking are accelerated predominantly under conditions conducive to DSA.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

A large part of the rural people of developing countries use traditional biomass stoves to meet their cooking and heating energy demands. These stoves possess very low thermal efficiency; besides, most of them cannot handle agricultural wastes. Thus, there is a need to develop an alternate cooking contrivance which is simple, efficient and can handle a range of biomass including agricultural wastes. In this reported work, a highly densified solid fuel block using a range of low cost agro residues has been developed to meet the cooking and heating needs. A strategy was adopted to determine the best suitable raw materials, which was optimized in terms of cost and performance. Several experiments were conducted using solid fuel block which was manufactured using various raw materials in different proportions; it was found that fuel block composed of 40% biomass, 40% charcoal powder, 15% binder and 5% oxidizer fulfilled the requirement. Based on this finding, fuel blocks of two different configurations viz. cylindrical shape with single and multi-holes (3, 6, 9 and 13) were constructed and its performance was evaluated. For instance, the 13 hole solid fuel block met the requirement of domestic cooking; the mean thermal power was 1.6 kWth with a burn time of 1.5 h. Furthermore, the maximum thermal efficiency recorded for this particular design was 58%. Whereas, the power level of single hole solid fuel block was found to be lower but adequate for barbecue cooking application.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

This paper presents experimental and computational results of oxy-fuel burner operating on classical flame and lameless mode for heat release rate of 26 kW/m3. The uniqueness of the burner arises from a slight asymmetric injection of oxygen at near sonic velocities. Measurements of emperature, species, total heat flux, radiative heat flux and NOx emission were carried out inside the furnace and the flow field was computationally analyzed. The flame studies were carried out for coaxial flow of oxygen and fuel jets with similar inlet velocities. This configuration results in slow mixing between fuel and oxygen and the flame is developed at distance away from the burner and the flame is bright/white in colour. In the flameless mode a slight asymmetric injection of the high velocity oxygen jet leads to a large asymmetric recirculation pattern with the recirculation ratio of 25 and the resulting flame is weak bluish in colour with little soot and acetylene formation. The classical flame in comparison is characterised by soot and acetylene formation, higher NOx and noise generation. The distribution of temperature and heat flux in the furnace is more uniform with flameless mode than with flame mode.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Electrochemical data are reported for oxygen reduction on platinized coconut-shell charcoal electrodes in 2.5M H*SO,, and 7M HsF’04. In both these media the electrodes exhibit good activity and can sustain currents up to 600 mA cm-* at a polarization of about 400 mV from their rest potentials. The overall performance is comparable with the best type of carbonsupported platinum electrodes reported in the literature.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Synthesis of mesoporous zirconium phosphate (MZP) by co-assembly of a tri-block copolymer, namely pluronic-F127, as a structure-directing agent, and a mixture of zirconium butoxide and phosphorous trichloride as inorganic precursors is reported. MZP with a specific surface area of 84 m(2) g(-1) average pore diameter of about 17 nm and pore volume of 0.35 cm(3) g(-1) has been prepared, and characterised by X-ray diffraction (XRD) and transmission electron microscopy. Nafion-MZP composite membrane is obtained by employing MZP as a surface-functionalised solid-super-acid-proton-conducting medium as well as all inorganic filler with high affinity to absorb water and fast proton-transport across the electrolyte membrane even under low relative humidity (RH) conditions. The composite membranes have been evaluated in H-2/O-2 polymer electrolyte fuel cells (PEFCs) at varying RH values between 18 and 100%; a peak power density of 355 mW cm(-2) at a load current density of 1,100 mA cm(-2) is achieved with the PEFC employing Nafion-MZP composite membrane while operating at optimum temperature (70 degrees C) under 18% RH and ambient pressure. On operating the PEFC employing Nafion-MZP membrane electrolyte with hydrogen and air feeds at ambient pressure and a RH value of 18%, a peak power density of 285 mW cm(-2) at the optimum temperature (60 degrees C) is achieved. In contrast, operating under identical conditions, a peak power density of only similar to 170 mW cm(-2) is achieved with the PEFC employing Nafion-1135 membrane electrolyte.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The design and fabrication of a spool valve for a two-stage Gifford-McMahon cycle cryorefrigerator is described. The effect of this valve on the P-V diagram and practical methods of reducing the P-V degradation are also discussed.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Demagnetization to zero remanent value or to a predetermined value is of interest to magnet manufacturers and material users. Conventional methods of demagnetization using a varying alternating demagnetizing field, under a damped oscillatory or conveyor system, result in either high cost for demagnetization or large power dissipation. A simple technique using thyristors is presented for demagnetizing the material. Power consumption is mainly in the first two half-cycles of applied voltage. Hence power dissipation is very much reduced. An optimum value calculation for a thyristor triggering angle for demagnetizing high coercive materials is also presented.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

A two stage Gifford-McMahon cycle cryorefrigerator operating at 20 K is described. This refrigerator uses a very simple ‘spool valve’ and a modified indigenous compressor to compress helium gas. This cryorefrigerator reaches a lowest temperature of 15.5 K; it takes ≈ 50 min to reach 20 K and the cooling capacity is ≈ 2.5 W at 25 K. The cool-down characteristics and load characteristics are presented in graphical form. The effect of changing the operating pressure ratio and the second stage regenerator matrix size are also reported. Pressure-volume (P-V) diagrams obtained at various temperatures indicate that P-V losses form the major fraction of the total losses and this becomes more pronounced as the temperature is decreased. A heat balance analysis shows the relative magnitudes of various losses.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Cooking efficiency and related fuel economy issues have been studied in a particular rural area of India. Following a description of the cooking practices and conditions in this locale, cooking efficiency is examined. A cooking efficiency of only 6% was found. The use of aluminium rather than clay pots results in an increased efficiency. In addition, cooking efficiency correlates very well with specific fuel consumption. The latter parameter is much simpler to analyse than cooking efficiency. The energy losses during cooking are examined in the second part of this case study. The major energy losses are heating of excess air, heat carried away by the combustion products, heat transmitted to the stove body and floor, and the chemical energy in charcoal residue. The energy loss due to the evaporation of cooking water is also significant because it represents about one-third of the heat reaching the pots.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Ethanol extract of whole plant of Trichosanthes cucumerina L. var. cucumerina was evaluated for antiovulatory activity in adult rats. The ethanol extract at the doses 200 and 400mg/kg body weight (orally) affected the normal estrous cycle showing a significant increase in estrus and metestrus phases and decrease in diestrus and proestrus phases. The extract also significantly reduced the number of healthy follicles (Class I-Class VI) and corpora lutea and increased the number of regressing follicles (Stage IA, Stage IB, Stage IIA, and Stage IIB). The protein and glycogen content in the ovaries were significantly reduced in treated rats. The cholesterol level was significantly increased, whereas, the enzyme activities like 3b-HSD and 17b-HSD were significantly inhibited in the ovary of treated rats. Serum FSH and LH levels were significantly reduced in the treated groups were measured by RIA. In acute toxicity test, neither mortality nor change in the behavior or any other physiological activities in mice were observed in the treated groups. In chronic toxicity studies, no mortality was recorded and there were no significant differences in the body and organ weights were observed between controls and treated rats. Hematological analysis showed no significant differences in any of the parameters examined (RBC, WBC count and Hemoglobin estimation). These observations showed the antiovulatory activity of ethanol extract of whole plant of Trichosanthes cucumerina L. var. cucumerina in female albino rats.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

A low cost 12 T pulsed magnet system has been integrated with a closed-cycle helium refrigerator. The copper solenoid is directly immersed in liquid nitrogen for reduced electrical resistance and more efficient heat transfer. This ensures a minimal delay of few minutes between pulses. The sample is mounted on the cold finger of the refrigerator and, along with the surrounding vacuum shroud, is inserted into the bore of the solenoid. When combined with software lock-in signal processing to reduce noise, quick but accurate measurements can be performed at temperatures 4 K-300 K up to 12 T. Quantum Hall effect data in a p-channel SiGe/Si heterostructure has been used to calibrate the instrument against a commercial superconducting magnet. Its versatility as a routine characterization tool is demonstrated bymeasuring parallel conduction in Si/SiGe modulation doped heterostructures.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

the heats of reaction of an oxygen-balanced ternary fuel-oxidizer system have been shown to be linearly related to the total oxidizing valences (P0) of the composition. Because calculation of P0 is simple, the method is found to help in evaluating the energetics of such systems. The accuracy of the method when applied to various ternary systems has been discussed.