428 resultados para Electronic systems
em Indian Institute of Science - Bangalore - Índia
Resumo:
The attenuation of long-wavelength phonons due to their interaction with electronic excitations in disordered systems is investigated here. Lattice strain couples to electronic stress, and thus ultrasonic attenuation measures electronic viscosity. The enhancement and critical divergence of electronic viscosity due to localization effects is calculated for the first time. Experimental consequences for the anomalous increase of ultrasonic attenuation in disordered metals close to the metal-insulator transition are discussed. In the localized regime, the appropriate model is one of electronic two-level systems (TLS’s) coupled to phonons. The TLS consists of a pair of states with one localized state occupied and the other unoccupied. The density of such low-excitation-energy TLS’s is nonzero due to long-range Coulomb interactions. The question of whether these could be significant low-energy excitations in glasses is touched upon.
Resumo:
A minimax filter is derived to estimate the state of a system, using observations corrupted by colored noise, when large uncertainties in the plant dynamics and process noise are presen.
Resumo:
Presently Bluetooth(BT) is one of the widely used device for personal communication. As BT devices are operating in the unlicensed ISM band, they are often subjected to the interference from WLAN. The band width of BT (1MHz) is narrower compare to the bandwidth of WLAN (22MHz). So for coexistence purpose it is important to observe the performance of narrow band signal BT in presence of wideband interference WLAN and vice versa. As there are many work on the performance of WLAN in presence BT interference 3]4]5]6], the main focus in this paper is on performance of BT in presence of WLAN interference in AWGN, Rayleigh fading channel. Then comparison of the performance using interference avoidance technique like adaptive frequency hopping, power control for BT system is given. Finally a conclusion is drawn observing the simulation results on the technique which is more suitable for WLAN interference mitigation in BT system.
Resumo:
Variable speed operation of microhydro power plants is gaining popularity due to the benefits that accrue from their use and the development of suitable generator control systems. This paper highlights the benefits of variable speed systems over conventional systems and also proposes a simple emulator for hydraulic turbines that operate in variable speed fixed flow rate mode. The emulator consists of an uncontrolled separately excited DC motor with additional resistors and has performance characteristics similar to that of the hydraulic turbine.
Resumo:
We investigate the problem of timing recovery for 2-D magnetic recording (TDMR) channels. We develop a timing error model for TDMR channel considering the phase and frequency offsets with noise. We propose a 2-D data-aided phase-locked loop (PLL) architecture for tracking variations in the position and movement of the read head in the down-track and cross-track directions and analyze the convergence of the algorithm under non-separable timing errors. We further develop a 2-D interpolation-based timing recovery scheme that works in conjunction with the 2-D PLL. We quantify the efficiency of our proposed algorithms by simulations over a 2-D magnetic recording channel with timing errors.
Resumo:
Distributed system has quite a lot of servers to attain increased availability of service and for fault tolerance. Balancing the load among these servers is an important task to achieve better performance. There are various hardware and software based load balancing solutions available. However there is always an overhead on Servers and the Load Balancer while communicating with each other and sharing their availability and the current load status information. Load balancer is always busy in listening to clients' request and redirecting them. It also needs to collect the servers' availability status frequently, to keep itself up-to-date. Servers are busy in not only providing service to clients but also sharing their current load information with load balancing algorithms. In this paper we have proposed and discussed the concept and system model for software based load balancer along with Availability-Checker and Load Reporters (LB-ACLRs) which reduces the overhead on server and the load balancer. We have also described the architectural components with their roles and responsibilities. We have presented a detailed analysis to show how our proposed Availability Checker significantly increases the performance of the system.
Resumo:
A new physically based classical continuous potential distribution model, particularly considering the channel center, is proposed for a short-channel undoped body symmetrical double-gate transistor. It involves a novel technique for solving the 2-D nonlinear Poisson's equation in a rectangular coordinate system, which makes the model valid from weak to strong inversion regimes and from the channel center to the surface. We demonstrated, using the proposed model, that the channel potential versus gate voltage characteristics for the devices having equal channel lengths but different thicknesses pass through a single common point (termed ``crossover point''). Based on the potential model, a new compact model for the subthreshold swing is formulated. It is shown that for the devices having very high short-channel effects (SCE), the effective subthreshold slope factor is mainly dictated by the potential close to the channel center rather than the surface. SCEs and drain-induced barrier lowering are also assessed using the proposed model and validated against a professional numerical device simulator.
Resumo:
We report a circuit technique to measure the on-chip delay of an individual logic gate (both inverting and non-inverting) in its unmodified form using digitally reconfigurable ring oscillator (RO). Solving a system of linear equations with different configuration setting of the RO gives delay of an individual gate. Experimental results from a test chip in 65nm process node show the feasibility of measuring the delay of an individual inverter to within 1pS accuracy. Delay measurements of different nominally identical inverters in close physical proximity show variations of up to 26% indicating the large impact of local or within-die variations.
Resumo:
Diffusion such is the integrated diffusion coefficient of the phase, the tracer diffusion coefficient of species at different temperatures and the activation energy for diffusion, are determined in V3Si phase with A15 crystal structure. The tracer diffusion coefficient of Si Was found to be negligible compared to the tracer diffusion coefficient of V. The calculated diffusion parameters will help to validate the theoretical analysis of defect structure of the phase, which plays an important role in the superconductivity.
Resumo:
In this paper, we study the Einstein relation for the diffusivity to mobility ratio (DMR) in n-channel inversion layers of non-linear optical materials on the basis of a newly formulated electron dispersion relation by considering their special properties within the frame work of k.p formalism. The results for the n-channel inversion layers of III-V, ternary and quaternary materials form a special case of our generalized analysis. The DMR for n-channel inversion layers of II-VI, IV-VI and stressed materials has been investigated by formulating the respective 2D electron dispersion laws. It has been found, taking n-channel inversion layers of CdGeAs2, Cd(3)AS(2), InAs, InSb, Hg1-xCdxTe, In1-xGaxAsyP1-y lattice matched to InP, CdS, PbTe, PbSnTe, Pb1-xSnxSe and stressed InSb as examples, that the DMR increases with the increasing surface electric field with different numerical values and the nature of the variations are totally band structure dependent. The well-known expression of the DMR for wide gap materials has been obtained as a special case under certain limiting conditions and this compatibility is an indirect test for our generalized formalism. Besides, an experimental method of determining the 2D DMR for n-channel inversion layers having arbitrary dispersion laws has been suggested.
Resumo:
There are essentially two different phenomenological models available to describe the interdiffusion process in binary systems in the olid state. The first of these, which is used more frequently, is based on the theory of flux partitioning. The second model, developed much more recently, uses the theory of dissociation and reaction. Although the theory of flux partitioning has been widely used, we found that this theory does not account for the mobility of both species and therefore is not suitable for use in most interdiffusion systems. We have first modified this theory to take into account the mobility of both species and then further extended it to develop relations or the integrated diffusion coefficient and the ratio of diffusivities of the species. The versatility of these two different models is examined in the Co-Si system with respect to different end-member compositions. From our analysis, we found that the applicability of the theory of flux partitioning is rather limited but the theory of dissociation and reaction can be used in any binary system.
Resumo:
The confusion over the growth rate of the Nb3Sn superconductor compound following the bronze technique is addressed. Furthermore, a possible explanation for the corrugated structure of the product phase in the multifilamentary structure is discussed. Kirkendall marker experiments are conducted to study the relative mobilities of the species, which also explains the reason for finding pores in the product phase layer. The movement of the markers after interdiffusion reflects that Sn is the faster diffusing species. Furthermore, different concentrations of Sn in the bronze alloy are considered to study the effect of Sn content on the growth rate. Based on the parabolic growth constant at different temperatures, the activation energy for the growth is determined.
Resumo:
This paper proposes a novel way of generating high voltage for electric discharge plasma in controlling NOx emission in diesel engine exhaust. A solar powered high frequency electric discharge topology has been suggested that will improve the size and specific energy density required when compared to the traditional repetitive pulse or 50 Hz AC energization. This methodology has been designed, fabricated and experimentally verified by conducting studies on real diesel engine exhaust.