8 resultados para Capture-recapture Data

em Indian Institute of Science - Bangalore - Índia


Relevância:

100.00% 100.00%

Publicador:

Resumo:

Action recognition plays an important role in various applications, including smart homes and personal assistive robotics. In this paper, we propose an algorithm for recognizing human actions using motion capture action data. Motion capture data provides accurate three dimensional positions of joints which constitute the human skeleton. We model the movement of the skeletal joints temporally in order to classify the action. The skeleton in each frame of an action sequence is represented as a 129 dimensional vector, of which each component is a 31) angle made by each joint with a fixed point on the skeleton. Finally, the video is represented as a histogram over a codebook obtained from all action sequences. Along with this, the temporal variance of the skeletal joints is used as additional feature. The actions are classified using Meta-Cognitive Radial Basis Function Network (McRBFN) and its Projection Based Learning (PBL) algorithm. We achieve over 97% recognition accuracy on the widely used Berkeley Multimodal Human Action Database (MHAD).

Relevância:

80.00% 80.00%

Publicador:

Resumo:

The apparent thermal activation energy of 0.56 eV and the electron thermal capture cross section of 2.0 × 10-16 cm2 are measured for the gold related acceptor level in p+ nn+ silicon diodes by isothermal current transient and DLTS techniques. Using the emission and capture rate data and a degeneracy ratio of 2, the energy separation of the trap level from the conduction band is calculated and found to have the same temperature dependence as the band gap indicating that the acceptor level is pinned with respect to the valence band a t Ev + 0.637 eV.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Background: A genetic network can be represented as a directed graph in which a node corresponds to a gene and a directed edge specifies the direction of influence of one gene on another. The reconstruction of such networks from transcript profiling data remains an important yet challenging endeavor. A transcript profile specifies the abundances of many genes in a biological sample of interest. Prevailing strategies for learning the structure of a genetic network from high-dimensional transcript profiling data assume sparsity and linearity. Many methods consider relatively small directed graphs, inferring graphs with up to a few hundred nodes. This work examines large undirected graphs representations of genetic networks, graphs with many thousands of nodes where an undirected edge between two nodes does not indicate the direction of influence, and the problem of estimating the structure of such a sparse linear genetic network (SLGN) from transcript profiling data. Results: The structure learning task is cast as a sparse linear regression problem which is then posed as a LASSO (l1-constrained fitting) problem and solved finally by formulating a Linear Program (LP). A bound on the Generalization Error of this approach is given in terms of the Leave-One-Out Error. The accuracy and utility of LP-SLGNs is assessed quantitatively and qualitatively using simulated and real data. The Dialogue for Reverse Engineering Assessments and Methods (DREAM) initiative provides gold standard data sets and evaluation metrics that enable and facilitate the comparison of algorithms for deducing the structure of networks. The structures of LP-SLGNs estimated from the INSILICO1, INSILICO2 and INSILICO3 simulated DREAM2 data sets are comparable to those proposed by the first and/or second ranked teams in the DREAM2 competition. The structures of LP-SLGNs estimated from two published Saccharomyces cerevisae cell cycle transcript profiling data sets capture known regulatory associations. In each S. cerevisiae LP-SLGN, the number of nodes with a particular degree follows an approximate power law suggesting that its degree distributions is similar to that observed in real-world networks. Inspection of these LP-SLGNs suggests biological hypotheses amenable to experimental verification. Conclusion: A statistically robust and computationally efficient LP-based method for estimating the topology of a large sparse undirected graph from high-dimensional data yields representations of genetic networks that are biologically plausible and useful abstractions of the structures of real genetic networks. Analysis of the statistical and topological properties of learned LP-SLGNs may have practical value; for example, genes with high random walk betweenness, a measure of the centrality of a node in a graph, are good candidates for intervention studies and hence integrated computational – experimental investigations designed to infer more realistic and sophisticated probabilistic directed graphical model representations of genetic networks. The LP-based solutions of the sparse linear regression problem described here may provide a method for learning the structure of transcription factor networks from transcript profiling and transcription factor binding motif data.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

A modified DLTS technique is proposed for the direct measurement of capture cross-section of MOS surface states. The nature of temperature and energy dependence σn is inferred from data analysis. Temperature dependence of σn is shown to be consistent with the observed DLTS line shapes.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

1. Dispersal ability of a species is a key ecological characteristic, affecting a range of processes from adaptation, community dynamics and genetic structure, to distribution and range size. It is determined by both intrinsic species traits and extrinsic landscape-related properties. 2. Using butterflies as a model system, the following questions were addressed: (i) given similar extrinsic factors, which intrinsic species trait(s) explain dispersal ability? (ii) can one of these traits be used as a proxy for dispersal ability? (iii) the effect of interactions between the traits, and phylogenetic relatedness, on dispersal ability. 3. Four data sets, using different measures of dispersal, were compiled from published literature. The first data set uses mean dispersal distances from capture-mark-recapture studies, and the other three use mobility indices. Data for six traits that can potentially affect dispersal ability were collected: wingspan, larval host plant specificity, adult habitat specificity, mate location strategy, voltinism and flight period duration. Each data set was subjected to both unifactorial, and multifactorial, phylogenetically controlled analyses. 4. Among the factors considered, wingspan was the most important determinant of dispersal ability, although the predictive powers of regression models were low. Voltinism and flight period duration also affect dispersal ability, especially in case of temperate species. Interactions between the factors did not affect dispersal ability, and phylogenetic relatedness was significant in one data set. 5. While using wingspan as the only proxy for dispersal ability maybe problematic, it is usually the only easily accessible species-specific trait for a large number of species. It can thus be a satisfactory proxy when carefully interpreted, especially for analyses involving many species from all across the world.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Opportunistic selection selects the node that improves the overall system performance the most. Selecting the best node is challenging as the nodes are geographically distributed and have only local knowledge. Yet, selection must be fast to allow more time to be spent on data transmission, which exploits the selected node's services. We analyze the impact of imperfect power control on a fast, distributed, splitting based selection scheme that exploits the capture effect by allowing the transmitting nodes to have different target receive powers and uses information about the total received power to speed up selection. Imperfect power control makes the received power deviate from the target and, hence, affects performance. Our analysis quantifies how it changes the selection probability, reduces the selection speed, and leads to the selection of no node or a wrong node. We show that the effect of imperfect power control is primarily driven by the ratio of target receive powers. Furthermore, we quantify its effect on the net system throughput.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

A novel algorithm for Virtual View Synthesis based on Non-Local Means Filtering is presented in this paper. Apart from using the video frames from the nearby cameras and the corresponding per-pixel depth map, this algorithm also makes use of the previously synthesized frame. Simple and efficient, the algorithm can synthesize video at any given virtual viewpoint at a faster rate. In the process, the quality of the synthesized frame is not compromised. Experimental results prove the above mentioned claim. The subjective and objective quality of the synthesized frames are comparable to the existing algorithms.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Opportunistic selection in multi-node wireless systems improves system performance by selecting the ``best'' node and by using it for data transmission. In these systems, each node has a real-valued local metric, which is a measure of its ability to improve system performance. Our goal is to identify the best node, which has the largest metric. We propose, analyze, and optimize a new distributed, yet simple, node selection scheme that combines the timer scheme with power control. In it, each node sets a timer and transmit power level as a function of its metric. The power control is designed such that the best node is captured even if. other nodes simultaneously transmit with it. We develop several structural properties about the optimal metric-to-timer-and-power mapping, which maximizes the probability of selecting the best node. These significantly reduce the computational complexity of finding the optimal mapping and yield valuable insights about it. We show that the proposed scheme is scalable and significantly outperforms the conventional timer scheme. We investigate the effect of. and the number of receive power levels. Furthermore, we find that the practical peak power constraint has a negligible impact on the performance of the scheme.