45 resultados para Atomic fountain clock

em Indian Institute of Science - Bangalore - Índia


Relevância:

100.00% 100.00%

Publicador:

Resumo:

We demonstrate launching of laser-cooled Yb atoms in a cold atomic fountain. Atoms in a collimated thermal beam are first cooled and captured in a magneto-optical trap (MOT) operating on the strongly allowed S-1(0) -> P-1(1) transition at 399 nm (blue line). They are then transferred to a MOT on the weakly allowed S-1(0) -> P-3(1) transition at 556 nm (green line). Cold atoms from the green MOT are launched against gravity at a velocity of around 2.5 m/s using a pair of green beams. We trap more than 107 atoms in the blue MOT and transfer up to 70% into the green MOT. The temperature for the odd isotope Yb-171 is similar to 1 mK in the blue MOT, and reduces by a factor of 40 in the green MOT.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

We present a technique for an all-digital on-chip delay measurement system to measure the skews in a clock distribution network. It uses the principle of sub-sampling. Measurements from a prototype fabricated in a 65 nm industrial process, indicate the ability to measure delays with a resolution of 0.5ps and a DNL of 1.2 ps.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Self-contained Non-Equilibrium Molecular Dynamics (NEMD) simulations using Lennard-Jones potentials were performed to identify the origin and mechanisms of atomic scale interfacial behavior between sliding metals. The mixing sequence and velocity profiles were compared via MD simulations for three cases, viz.: sell-mated, similar and hard-softvcrystal pairs. The results showed shear instability, atomic scale mixing, and generation of eddies at the sliding interface. Vorticity at the interface suggests that atomic flow during sliding is similar to fluid flow under Kelvin-Helmholtz instability and this is supported by velocity profiles from the simulations. The initial step-function velocity profile spreads during sliding. However the velocity profile does not change much at later stages of the simulation and it eventually stops spreading. The steady state friction coefficient during simulation was monitored as a function of sliding velocity. Frictional behavior can be explained on the basis of plastic deformation and adiabatic effects. The mixing layer growth kinetics was also investigated.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

It has been shown that Dirac equation employing a constant value of the screening constant Z0 does not explain the variation of spin-orbit splittings of 2p and 3p levels with atomic number Z. A model which takes into account the variation of Z0 withZ is shown to satisfactorily predict the dependence of spinorbit splittings onZ.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Atomic layer deposition was used to obtain TiO2 thin films on Si (100) and fused quartz, using a novel metal organic precursor. The films were grown at 400 degrees C, varying the amount of oxygen used as the reactive gas. X-ray diffraction showed the films to be crystalline, with a mixture of anatase and rutile phases. To investigate their optical properties, ellipsometric measurements were made in the UV-Vis-NIR range (300-1700 nm). Spectral distribution of various optical constants like refractive index (n), absorption index (k), transmittance (T), reflectance (R), absorption (A) were calculated by employing Bruggemann's effective medium approximation (BEMA) and Maxwell-Garnet effective medium approximation, in conjunction with the Cauchy and Forouhi-Bloomer (FB) dispersion relations. A layered optical model has been proposed which gives the thickness, elemental and molecular composition, amorphicity and roughness (morphology) of the TiO2 film surface and and the film/substrate interface, as a function of oxygen flow rate The spectral distribution of the optical band gap (E-g(opt)), complex dielectric constants (epsilon' and epsilon''), and optical conductivity (sigma(opt)), has also been determined.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The time evolution of the film thickness and domain formation of octadecylamine molecules adsorbed oil a mica surface is investigated Using atomic force microscopy. The adsorbed Film thickness is determined by measuring the height profile across the mica-amine interface of a mica surface partially immersed in a 15 mM solution of octadecylamine in chloroform. Using this novel procedure, adsorption of amine on mica is found to occur in three distinct stages, with morphologically distinct domain Formation and growth occurring during each stage. In the first stage, where adsorption is primarily in the thin-film regime, all average Film thickness of 0.2 (+/- 0.3) nm is formed for exposure times below 30 s and 0.8 (+/- 0.2) nm for 60 s of immersion time. During this stage, large sample spanning domains are observed. The second stage, which occurs between 60-300 s, is associated with it regime of rapid film growth, and the film thickness increases from about 0.8 to 25 nm during this stage. Once the thick-film regime is established, further exposure to the amine solution results in all increase in the domain area, and it regime of lateral domain growth is observed. In this stage, the domain area coverage grows from 38 to 75%, and the FTIR spectra reveal an increased level of crystallinity in the film. Using it diffusion-controlled model and it two-step Langmuir isotherm, the time evolution of the film growth is quantitatively captured. The model predicts the time at which the thin to thick film transition occurs as well its the time required for complete film growth at longer times. The Ward-Tordai equation is also solved to determine the model parameters in the monolayer (thin-film) regime, which occurs during the initial stages of film growth.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The electron-energy equation for an atomic radiating plasma is considered in this work. Using the atomic model of Bates, Kingston and McWhirter, the radiation loss-term valid for all optical thicknesses is obtained. A study of the energy gained by electrons in inelastic collisions shows that the radiation loss term can be neglected only for rapidly-decaying or fast-growing plasmas. Emission from optically thin plasmas is considered next and an exact expression is given for the total radiation loss in a recombination continuum. A derivation of the Kramers-Unsöld approximation is presented and the error involved in estimating the total emitted recombination radiation by this approximation is shown to be small.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

With respect to GaAs epitaxial lift-off technology, we report here the optimum atomic spacing (5-10 nm) needed to etch off the AlAs release layer that is sandwiched between two GaAs epitaxial layers. The AlAs etching rate in hydrofluoric acid based solutions was monitored as a function of release layer thickness. We found a sudden quenching in the etching rate, approximately 20 times that of the peak value, at lower dimensions (similar to2.5 nm) of the AlAs epitaxial layer. Since this cannot be explained on the basis of a previous theory (inverse square root of release layer thickness), we propose a diffusion-limited mechanism to explain this reaction process. With the diffusion constant being a mean-free-path-dependent parameter, a relation between the mean free path and the width of the channel is considered. This relation is in reasonable agreement with the experimental results and gives a good physical insight to the reaction kinetics.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

In this paper, we propose a novel and efficient algorithm for modelling sub-65 nm clock interconnect-networks in the presence of process variation. We develop a method for delay analysis of interconnects considering the impact of Gaussian metal process variations. The resistance and capacitance of a distributed RC line are expressed as correlated Gaussian random variables which are then used to compute the standard deviation of delay Probability Distribution Function (PDF) at all nodes in the interconnect network. Main objective is to find delay PDF at a cheaper cost. Convergence of this approach is in probability distribution but not in mean of delay. We validate our approach against SPICE based Monte Carlo simulations while the current method entails significantly lower computational cost.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Chemical shifts of K absorption discontinuities, Delta E, of several manganese, iron and cobalt oxides with the metal in the formal oxidation states between +2 and +4, have been measured. These data, together with data in the literature on other compounds of these metals, can be fitted into the expression Delta E=aq+bq2, where q is the effective atomic charge on the metal. Theoretical considerations also support this functional relationship between Delta E and q.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

X-ray crystallographlc studies on 3′–5′ ollgomers have provided a great deal of information on the stereochemistry and conformational flexibility of nucleic acids and polynucleotides. In contrast, there is very little Information available on 2′–5′ polynucleotides. We have now obtained the crystal structure of Cytidylyl-2′,5′-Adenoslne (C2′p5′A) at atomic resolution to establish the conformational differences between these two classes of polymers. The dlnucleoside phosphate crystallises in the monocllnlc space group C2, with a = 33.912(4)Å, b =16.824(4)Å, c = 12.898(2)Å and 0 = 112.35(1) with two molecules in the asymmetric unit. Spectacularly, the two independent C2′p5′A molecules in the asymmetric unit form right handed miniature parallel stranded double helices with their respective crystallographic two fold (b axis) symmetry mates. Remarkably, the two mini duplexes are almost indistinguishable. The cytosines and adenines form self-pairs with three and two hydrogen bonds respectively. The conformation of the C and A residues about the glycosyl bond is anti same as in the 3′–5′ analog but contrasts the anti and syn geometry of C and A residues in A2′p5′C. The furanose ring conformation is C3′endo, C2′endo mixed puckering as in the C3′p5′A-proflavine complex. A comparison of the backbone torsion angles with other 2′–5′ dinucleoside structures reveals that the major deviations occur in the torsion angles about the C3′–C2′ and C4′-C3′ bonds. A right-handed 2′–5′ parallel stranded double helix having eight base pairs per turn and 45° turn angle between them has been constructed using this dinucleoside phosphate as repeat unit. A discussion on 2′–5′ parallel stranded double helix and its relevance to biological systems is presented.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

An experimental flow loop with He II flow driven by fountain effect pumps (FEPs) is studied with respect to operation at different flow impedances and with thermal loads applied at different positions. The measured values of temperature, flow rate and pressure drop are compared with calculations resulting from a simplified model which assumes ideal performance of the porous plug and of the heat exchangers and which does not take into account Gorter-Mellink (GM) conduction. The main features of the loop are shown to be well described by this model. Refined calculations with a more complex model, including GM conduction of the He II, are only required for predicting the temperature distribution in some discrete regions of the loop.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Glassy B&, the parent compound of the superionic conductor LiI-Li&B& has been studied by the molecular dynamics technique using a new potential model. The results suggest that the glass is made up of local units of four-membered B2S2 rings bridged by sulfur atoms, leading to a chainlike structure. Various pair correlation functions have been analyzed, and the B2Sz rings have been found to be planar. The calculated neutron structure factor shows a peak at 1.4 A-' which has been attributed to B-B correlations at 5.6 A. The glass transition temperature of the simulated system has been calculated to be around 800 K.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

In this paper, we propose a new token-based distributed algorithm for total order atomic broadcast. We have shown that the proposed algorithm requires lesser number of messages compared to the algorithm where broadcast servers use unicasting to send messages to other broadcast servers. The traditional method of broadcasting requires 3(N - 1) messages to broadcast an application message, where N is the number of broadcast servers present in the system. In this algorithm, the maximum number of token messages required to broadcast an application message is 2N. For a heavily loaded system, the average number of token messages required to broadcast an application message reduces to 2, which is a substantial improvement over the traditional broadcasting approach.