22 resultados para Antiferroelectric

em Indian Institute of Science - Bangalore - Índia


Relevância:

20.00% 20.00%

Publicador:

Resumo:

Antiferroelectric lead zirconate (PZ) thin films were deposited by pulsed laser ablation on platinum-coated silicon substrates. Films showed a polycrystalline pervoskite structure upon annealing at 650 degrees C for 5-10 min. Dielectric properties were investigated as a function of temperature and frequency. The dielectric constant of PZ films was 220 at 100 kHz with a dissipation factor of 0.03. The electric field induced transformation from the antiferroelectric phase to the ferroelectric phase was observed through the polarization change, using a Sawyer-Tower circuit. The maximum polarization value obtained was 40 mu C/cm(2). The average fields to excite the ferroelectric state, and to reverse to the antiferroelectric state were 71 and 140 kV/cm, respectively. The field induced switching was also observed through double maxima in capacitance-voltage characteristics. Leakage current was studied in terms of current versus time and current versus voltage measurements. A leakage current density of 5x10(-7) A/cm(2) at 3 V, for a film of 0.7 mu m thickness, was noted at room temperature. The trap mechanism was investigated in detail in lead zirconate thin films based upon a space charge limited conduction mechanism. The films showed a backward switching time of less than 90 ns at room temperature.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The coefficients of thermal expansion reported by Worlton et al. [6] in the case of zircon are given in Table II along with the present data. Although Oql > or• in both cases, the anisotropy is more marked in the case of DyV04. From Table II, it is clear that the coefficient of volume expansion (,6) is almost the same for both compounds.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Sol-gel derived PbZrO3 (PZ) thin films have been deposited on Pt(111)/Ti/SiO2/Si substrate and according to the pseudotetragonal symmetry of PZ, the relatively preferred (110)t oriented phase formation has been noticed. The room temperature P‐E hysteresis loops have been observed to be slim by nature. The slim hysteresis loops are attributed to the [110]t directional antiparallel lattice motion of Pb ions and by the directionality of the applied electric field. Pure PZ formation has been characterized by the dielectric phase transition at 235 °C and antiferroelectric P‐E hysteresis loops at room temperature. Dielectric response has been characterized within a frequency domain of 100 Hz–1 MHz at various temperatures ranging from 40 to 350 °C. Though frequency dispersion of dielectric behaves like a Maxwell–Wagner type of relaxation, ω2 dependency of ac conductivity indicates that there must be G‐C equivalent circuit dominance at high frequency. The presence of trap charges in PZ has been determined by Arrhenius plots of ac conductivity. The temperature dependent n (calculated from the universal power law of ac conductivity) values indicate an anomalous behavior of the trapped charges. This anomaly has been explained by strongly and weakly correlated potential wells of trapped charges and their behavior on thermal activation. The dominance of circuit∕circuits resembling Maxwell–Wagner type has been investigated by logarithmic Nyquist plots at various temperatures and it has been justified that the dielectric dispersion is not from the actual Maxwell–Wagner-type response.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Antiferroelectric lead zirconate thin films were deposited using KrF (248 nm) excimer laser ablation technique. Utilization of antiferroelectric materials is proposed in high charge storage capacitors and microelectromechanical (MEMs) devices. The antiferroelectric nature of lead zirconate thin films was confirmed by the presence of double hysteresis behavior in polarization versus applied field response. By controlling the processing parameters, two types of microstructures evolved, namely columnar (or in-situ) and multi-grained (or ex-situ) in PZ thin films. The dielectric and electrical properties of the lead zirconate thin films were studied with respect to the processing parameters. Analysis on charge transport mechanism, using space charge limited conduction phenomenon, showed the presence of both shallow and deep trap sites in the PZ thin films. The estimated shallow trap energies were 0.448 and 0.491 eV for in-situ and ex-situ films, with respective concentrations of approximate to 7.9 x 10(18)/cc and approximate to 2.97 x 10(18)/cc. The deep trap energies with concentrations were 1.83 eV with 1.4 x 10(16)/cc for ex-situ and 1.76 eV with 3.8 x 10(16)/cc for in-situ PZ thin films, respectively. These activation energies were found to be consistent with the analysis from Arrhenius plots of de current densities. (C) 2000 Elsevier Science S.A. All rights reserved.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Antiferroelectric lead zirconate thin films were formed on platinum coated silicon substrates by a reactive magnetron co-sputtering method. The films showed (240) preferred orientation. The crystallization temperatures and the preferred orientation were affected by the lead content in the films. The electric field forced transformation from the antiferroelectric phase to the ferroelectric phase was observed at room temperature with a maximum polarization value of 36 mu C/cm(2). The average field to excite the ferroelectric state and that for the reversion to the antiferroelectric state were 267 and 104 kV/cm respectively. (C) 1995 American Institute of Physics.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Lead Zirconate (PbZrO3) thin films were deposited by pulsed laser ablation method. Pseudocubic (110) oriented in-situ films were grown at low pressure. The field enforced anti-ferroelectric (AFE) to ferroelectric (FE) phase transformation behaviour was investigated by means of a modified Sawyer Tower circuit as well as capacitance versus applied voltage measurements. The maximum polarisation obtained was 36 mu C cm(-2) and the critical field to induce ferroelectric state and to reverse the antiferroelectric slates were 65 and 90 kV cm(-1) respectively. The dielectric properties were investigated as a function of frequency and temperature. The dielectric constant of the AFE lead zirconate thin him was 190 at 100 kHz which is more than the bulk ceramic value (120) with a dissipation factor of less than 0.07. The polarisation switching kinetics of the antiferroelectric PbZrO3 thin films showed that the switching time to be around 275 ns between antipolar state to polar states. (C) 1999 Elsevier Science S.A. All rights reserved.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

In recent times antiferroelectric thin-film material compositions have been identified as one of the most significant thin films for development of devices such as high charge storage, charge couplers/decouplers, and high strain microelectromechanical systems. Thus, understanding the dielectric and electrical properties under an ac signal drive in these antiferroelectric thin-film compositions, such as lead zirconate thin films, and the effect of donor doping on them is very necessary. For this purpose, thin films of antiferroelectric lead zirconate and La-modified lead zirconate thin films with mole % concentrations of 0, 3, 5, and 9 have been deposited by pulsed excimer laser ablation. The dielectric and hysteresis properties have confirmed that with a gradual increase of the La content, the room-temperature antiferroelectric lead zirconate thin films can be modified into ferroelectric and paraelectric phases. ac electrical studies revealed that the polaronic related hopping conduction is responsible for the charge transport phenomenon in these films. With a La content of less than or equal to3 mole % in pure lead zirconate, the conductivity of the films has been reduced and followed by an increase of its conductivity for a greater than or equal to3% addition of La to lead zirconate thin films. The polaronic activation energies are also found to follow a similar trend as that of the conductivity.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Antiferroelectric materials (example: lead zirconate and modified lead zirconate stannate), in which a field-induced ferroelectric phase transition is feasible due to a small free energy difference between the ferroelectric and the antiferroelectric phases, are proven to be very good candidates for applications involving actuation and high charge storage devices. The property of reverse switching from the field-induced ferroelectric to antiferroelectric phases is studied as a function of temperature, applied electric field, and sample thickness in antiferroelectric lead zirconate thin films deposited by pulsed excimer laser ablation. The maximum released charge density was 22 μC/cm2 from a stored charge density of 36 μC/cm2 in a 0.55 μ thick lead zirconate thin film. This indicated that more than 60% of the stored charge could be released in less than 7 ns at room temperature for a field of 200 kV/cm. The content of net released charge was found to increase with increasing field strength, whereas with increasing temperature the released charge was found to decrease. Thickness-dependent studies on lead zirconate thin films showed that size effects relating to extrinsic and intrinsic pinning mechanisms controlled the released and induced charges through the intrinsic switching time. These results proved that antiferroelectric PZ thin films could be utilized in high-speed charge decoupling capacitors in microelectronics applications.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Niobium-modified lead zirconate stannate titanate antiferroelectric thin films with the chemical composition of (Pb0.99Nb0.02)(Zr0.57Sn0.38Ti0.05)0.98O3 were deposited by pulsed excimer laser ablation technique on Pt-coated Si substrates. Field-induced phase transition from antiferroelectric to ferroelectric properties was studied at different fields as a function of temperature. The field forced ferroelectric phase transition was elucidated by the presence of double-polarization hysteresis and double-butterfly characteristics from polarization versus applied electric field and capacitance and voltage measurements, respectively. The measured forward and reverse switching fields were 25 kV/cm and 77 kV/cm, respectively. The measured dielectric constant and dissipation factor were 540 and 0.001 at 100 kHz, respectively, at room temperature.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Freestanding crystalline PbZrO3 nanoparticles with an average size of 15 nm were synthesized by the modified sot gel method and characterized by X-ray diffraction and electron microscopy. Dielectric studies indicated that the paraelectric to antiferroelectric phase transition in the PbZrO3 nanoparticles was observed around at 205 degrees C which was at 233 degrees C for PbZrO3 bulk material. A single leaky ferroelectric loop was observed instead of an antiferroelectric double hysteresis loop which may be because of the defects such as grain boundaries and the pores in the sample because the sample was not sintered at higher temperatures to retain the nanoscale dimension of the PbZrO3 particles.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The ferroelectric system (1-x)PbZrO3-(x)Bi(Mg1/2Ti1/2)O-3 has been investigated as a function of composition, temperature, and electric field by x-ray powder diffraction, dielectric, and ferroelectric measurements. Within the solubility limit (x similar to 0.25), the system evolves from an orthorhombic-antiferroelectric to rhombohedral-ferroelectric state through a phase coexistence region. The highest polarization was found not for the composition exhibiting a pure ferroelectric state, but for a composition x = 0.15 exhibiting ferroelectric + antiferroelectric phase coexistence close to the rhombohedral phase boundary. Electric poling of the equilibrium two-phase state led to irreversible enhancement in the rhombohedral phase fraction suggesting that the enhanced polarization is related to the enhanced polarizability of the lattice due to first order criticality as in ferroelectric-ferroelectric morphotropic phase boundary systems. (C) 2013 AIP Publishing LLC.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Both diglycine sulphate (DGS) and diglycine sulphate monohydrate (DGS.H2O) are reported to crystallize from solution with pH < 1(1,2). DGS.H2O (point group 2/m; Z = 4) shows a dielectric anomaly at 72°C suggestive of antiferroelectric transition(1). The crystals obtained by us from solution with pH < 0.5 at 20-25°C were always DGS (point group mmm; Z = 8) as confirmed by X-ray studies. The measurement of its dielectric constant along [100], [010] and [001] did not indicate any phase transition in the range 5-400°K. Thus DGS is a normal dielectric unlike TGS. The polarized Raman spectra and the infrared spectra were recorded to examine the configuration of glycine in DGS(3). The vibration spectra reveals that both the glycines in DGS exist as NH3+CH2COOH, thus precluding the hydrogen bond of the type N+-H…O- which exists between two glycine units in TGS. This seems to be a good reason for the difference in the dielectric behaviour of these two glycine sulphates.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

The dipole patterns in the ferroelectric and antiferroelectric structures are drawn according to experimentally determined symmetry changes in the ferroelectrics and antiferroelectrics. For the ferroelectrics the dipoles of the unit cells for one domain are oriented in parallel and the directions of the polarisation in the adjacent domains are at definite angles to each other. It is assumed for the antiferroelectrics, that the superstructural unit cell is formed by the adjacent cells of the paraelectrical modification; the subcells having the antiparallel directions of the polarisation. It is these superstructural cells of the antiferroelectrics that are determined during the experimental investigations of the antiferroelectrics. The superstructural cells of the adjacent domains are different. In one case, the difference is that in the adjacent domains, the directions of the polarisation in the subcells form an angle (e.g., in PbZrO3). In other cases the superstructural cells have not only different directions of the polarisation in the subcells but different signs of the enantiomorphism (e.g., NH4H2PO4). In the third case, the only difference is that the superstructural unit cells in the adjacent domains are turned by an angle to each other round the direction of the subcell polarisation [e.g., (NH4)2H3IO6], etc.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

The Raman and i.r. spectra of antiferroelectric copper formate tetrahydrate have been recorded. The i.r. spectrum of copper formate tetrahydrate at liquid air temperature (the phase transition is at −38·9°C) does not show any striking changes from the room temperature spectrum except for intensity variations. This is explained as due to the fact that the frequency of reorientation of the protons even in the paraelectric phase is much less than the optical frequencies.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Multilayers of Pb(Mg1/3Nb2/3)O-3 (PMN)-PbTiO3 (PT) were deposited through pulsed laser ablation deposition with different periodicities (d=10, 20, 30, 40, 50, 60, and 70 nm) for a constant total thickness of the film. The presence of superlattice reflections in the x-ray diffraction pattern clearly showed the superlattice behavior of the fabricated structures over a periodicity range of 20-50 nm. Polarization hysteresis and the capacitance-voltage characteristics of these films show clear size dependent ferroelectric and antiferroelectric (AFE) characteristics. Presence of long-range coupling and strain in multilayers with lower periodicity (similar to 10 nm) exhibited a clear ferroelectric behavior similar to a solid solution of PMN and PT. Multilayers with higher periodicities (20-50 nm) exhibited antiferroelectric behavior, which could be understood from the energy arguments. On further increase of periodicity, they again exhibit ferroelectric behavior. The polarization studies were carried out beyond the Curie temperature T-c of PMN to understand the interlayer interaction. The interaction is changed to a ferroelectric-paraelectric interlayer and tends to lose its antiferroelectric behavior. The behavior of remnant polarization P-r and dP(r)/dT with temperature clearly proves that the AFE coupling of these superlattices is due to the extrinsic interfacial coupling and not an intrinsic interaction as in a homogeneous conventional AFE material. The evidence of an averaged behavior at a periodicity of similar to 10 nm, and the behavior of individual materials at larger periodicities were further confirmed through dielectric phase transition studies. The presence of AFE interfacial coupling was insignificant over the dielectric phase transition of the multilayers.