375 resultados para LEAD-BISMUTH GLASSES
Resumo:
The lead based ferroelectric PbZr0.53Ti0.47O3 (PZT), (Pb0.90La0.10)TiO3 (PLT10) and (Pb0.80La0.20)TiO3 (PLT20) thin films, prepared by pulsed laser ablation technique, were studied for their response to the 70 MeV oxygen ion irradiation. The dielectric analysis, capacitance-voltage (C- V) and DC leakage current measurements were performed before and after the irradiation to high-energy oxygen ions. The irradiation produced considerable changes in the dielectric, C-V, leakage characteristics and induced some amount of amorphization. The PZT films showed partial recrystallization after a thermal annealing at 400 degrees C for 10 min. The phase transition temperature [T-c] of PLT20 increased from 115 degrees C to 120 degrees C. The DC conductivity measurements showed a shift in the onset of non-linear conduction region. The current density decreased by two orders of magnitude after irradiation. After annealing the irradiated films at a temperature of 400 degrees C for 10 min, the films partially regained the dielectric and electrical properties. The results are discussed in terms of the irradiation-induced amorphization, the pinning of the ferroelectric domains by trapped charges and the thermal annealing of the defects generated during the irradiation. (C) 2007 Elsevier B.V. All rights reserved.
Resumo:
Experiments on Ge15Tc85-xSix glasses (2 <= x <= 12) using alternating differential scanning calorimetry (ADSC) indicate that these glasses exhibit one glass transition and two crystallization reactions upon heating. The glass transition temperature has been found to increase almost linearly with silicon content, in the entire composition tie-line. The first crystallization temperature (T-cl) exhibits an increase with silicon content for x<5; T-cl remains almost a constant in the composition range 5 < x <= 10 and it increases comparatively more sharply with silicon content thereafter. The specific heat change (Delta C-p) is found to decrease with an increase in silicon content, exhibiting a minimum at x=5 (average coordination number, (r) = 2.4); a continuous increase is seen in Delta C-p with silicon concentration above x = 5. The effects seen in the variation with composition of T-cl and Delta C-p at x=5, are the specific signatures of the mean-field stiffness threshold at (r) = 2.4. Furthermore, a broad trough is seen in the enthalpy change (Delta H-NR), which is indicative of a thermally reversing window in Ge15Te85-xSix glasses in the composition range 2 <= x <= 6 (2.34 <= (r) <= 2.42).
Resumo:
The photoluminescence (PL) of a series of (GeS2)(80)(Ga2S3)(20) glasses doped with different amounts of Er (0.17, 0.35, 0.52, 1.05 and 1.39 at.%) at 77 and 4.2 K has been studied. The influence of the temperature on the emission cross-section of the PL bands at -> 1540, 980 and 820 nm under host excitation has been defined. A quenching effect of the host photoluminescence has been established from the compositional dependence of the PL intensity. It has been found that the present Er3+-doped Ge-S-Ga glasses posses PL lifetime values about 3.25 ms. (C) 2007 Elsevier B.V. All rights reserved.
Resumo:
Investigations on the electrical switching behavior and thermal studies using Alternating Differential Scanning Calorimetry have been undertaken on bulk, melt-quenched Ge22Te78-,Is (3 <= x <= 10) chalcohalide glasses. All the glasses studied have been found to exhibit memory-type electrical switching. The threshold voltages of Ge22Te78-I-x(x) glasses have been found to increase with the addition of iodine and the composition dependence of threshold voltages of Ge22Te78-xIx glasses exhibits a cusp at 5 at.% of iodine. Also, the variation with composition of the glass transition temperature (Tg) of Ge22Te78-I-x(x) glasses, exhibits a broad hump around this composition. Based on the present results, the composition x = 5 has been identified as the inverse rigidity percolation threshold at which Ge22Te78-I-x(x) glassy system exhibits a change from a stressed rigid amorphous solid to a flexible polymeric glass. Further, a sharp minimum is seen in the composition dependence of non-reversing enthalpy (Delta H-nr) of Ge22Te78-I-x(x) glasses at x = 5, which is suggestive of a thermally reversing window at this composition. (C) 2007 Elsevier Ltd. All rights reserved.
Resumo:
The variation of resistivity in an amorphous As30Te70-xSix system of glasses with high pressure has been studied for pressures up to 8 GPa. It is found that the electrical resistivity and the conduction activation energy decrease continuously with increase in pressure, and samples become metallic in the pressure range 1.0-2.0 GPa. Temperature variation studies carried out at a pressure of 0.92 GPa show that the activation energies lie in the range 0.16-0.18eV. Studies on the composition/average co-ordination number (r) dependence of normalized electrical resistivity at different pressures indicate that rigidity percolation is extended, the onset of the intermediate phase is around (r) = 2.44, and completion at (r) = 2.56, respectively, while the chemical threshold is at (r) = 2.67. These results compare favorably with those obtained from electrical switching and differential scanning calorimetric studies.
Resumo:
Electrical switching and differential scanning calorimetric studies are undertaken on bulk As20Te80-xGax glasses, to elucidate the network topological thresholds. It is found that these glasses exhibit a single glass transition (T-g) and two crystallization reactions (T-cl & T-c2) upon heating. It is also found that there is only a marginal change in T-g with the addition of up to about 10% of Ga; around this composition an increase is seen in 7, which culminates in a local maximum around x = 15. The decrease exhibited in T, beyond this composition, leads to a local minimum at x = 17.5. Further, the As20Te80-xGax glasses are found to exhibit memory type electrical switching. The switching voltages (VT) increase with the increase in gallium content and a local maximum is seen in V-tau around x = 15. VT is found to decrease with x thereafter, exhibiting a local minimum around x = 17.5. The composition dependence of T-cl is found to be very similar to that of V-T of As20Te80-xGax glasses. Based on the present results, it is proposed that the composition x = 15 and x = 17.5 correspond to the rigidity percolation and chemical thresholds, respectively, of As20Te80-xGax glasses. (c) 2007 Elsevier B.V. All rights reserved.
Resumo:
Studies on the electrical switching behavior of melt quenched bulk Si15Te85-xSbx glasses have been undertaken in the composition range (1 <= x <= 10), in order to understand the effect of Sb addition on the electrical switching behavior of Si15Te85-x base glass. It has been observed that all the Si15Te85-xSbx glasses studied exhibit a smooth memory type switching. Further, the switching voltages are found to decrease almost linearly with Sb content, which indicates that the metallicity of the dopant plays a dominant role in this system compared to network connectivity/rigidity. The thickness dependence of switching voltage (V-th) indicates a clear thermal origin for the switching mechanism. The temperature variation of switching voltages reveals that the Si15Te85-xSbx glasses studied have a moderate thermal stability. (C) 2009 Elsevier B.V. All rights reserved.
Resumo:
Alternating differential scanning calorimetry measurements have been undertaken on the Ge15Te85-xInx (1 <= x <= 11) series of glasses. It is found that there is a marginal decrease in the glass transition temperature (T-g) in the composition range 1 <= x <= 3. Above x = 3, a monotonic increase is seen in T-g which indicates a continuous build-up in network connectivity and absence of any nanophase separation. The non-reversing heat flow (Delta H-NR) has been found to exhibit a broad trough between the compositions x = 3 and 7, which clearly indicates the presence of a thermally reversing window in Ge15Te85-xInx glasses in the composition range 3 <= x <= 7.
Resumo:
Transparent SrO-2B(2)O(3) (SBO) glasses were fabricated via the conventional melt-quenching technique. X-ray diffraction (XRD) and differential thermal analysis (DTA) studies carried out on the as-quenched glasses confirmed their amorphous and glassy nature, respectively. The thermal parameters were evaluated for the as-quenched glass-plates using non-isothermal DTA experiments. The average values of the activation energies for the glass transition and crystallization of these glasses were 800 +/- 10 kJ/mol and 298 +/- 10 kJ/mol respectively. The values of the kinetic parameters that were obtained by different non-isothermal techniques were in close agreement.
Resumo:
The optical properties of Bi(2)V(1-x)MnxO(5.5-x) (x=0.05, 0.1, 0.15 and 0.2 at.%) thin films fabricated by pulsed laser deposition on platinized Silicon Substrates were Studied in UV-visible spectral region (1.51-4.17 CV) using spectroscopic ellipsometry. The optical constants and thicknesses of these films have been obtained by fitting the ellipsometric data (Psi and Delta) using a multilayer four-phase model system and a relaxed Lorentz oscillator dispersion relation. The surface roughness and film thickness obtained by spectroscopic ellipsometry were found to be consistent with the results obtained by atomic force and scanning electron microscopy. The refractive index measured at 650 nm does not show any marginal increase with Mn content. Further, the extinction coefficient does not show much decrease with increasing Mn content. An increase in optical band gap energy from 2.52 to 2.77 eV with increasing Mn Content from x = 0.05 to 0.15 was attributed to the increase in oxygen ion vacancy disorder. (C) 2009 Elsevier Ltd. All rights reserved.
Resumo:
1. The polarographic behaviour of glycine, α-alanine, β-alanine, valine, aspartic acid, glutamic acid and asparagine complexes of lead has been studied at various pH values and in presence of (1) NaOH, (2) Na2CO3 and (3) NH4 NO3+NH4OH. All the polarographic waves have been found to be reversible. 2. Experiments conducted on the effect of variation of pH, i.e., 7
Resumo:
The observation of (A-X) system of BiF has been extended up to λ 5316 and twenty new bands belonging to this system have been recorded. The band heads could be represented by the following equation: {Mathematical expression} Seven other faint bands in the region λ 5316-5492 have also been reported, which, however, could not be classified. By our analysis of the present data and from known thermochemical data it has been deduced that the ground state dissociation energy is, in all probability, around 20000 cm.-1 (∼2·5 ev.) and that the dissociation products are the normal Bi and F atoms. The dissociation energy of the upper state and the correlation rules have been used to show that the dissociation products in the upper state are very likely to be Bi atom in the excited state2D3/2 and F atom in its ground state (2P3/2).
Resumo:
Transparent glasses of various compositions in the system (100 -x)(Li2B4O7)-x(Ba5Li2Ti2Nb8O30) (5 <= x <= 20, in molar ratio) were fabricated by splat quenching technique. The glassy nature of the as-quenched samples was established by differential thermal analyses (DTA). X-ray powder diffraction studies confirmed the as-quenched glasses to be amorphous and the heat-treated to be nanocrystalline. Controlled heat-treatment of the as-quenched glasses at 500 degrees C for 8 h yielded nanocrystallites embedded in the glass matrix. High Resolution Transmission Electron Microscopy (HRTEM) of these samples established the size of the crystallites to be in the nano-range and confirmed the phase to be that of Ba5Li2Ti2Nb8O30 (BLTN) which was, initially, identified by X-ray powder diffraction. The frequency, temperature and compositional dependence of the dielectric constant and the electrical conductivity of the glasses and glass nanocrystal composites were investigated in the 100 Hz to 10 MHz frequency range. Electrical relaxations were analyzed using the electric modulus formalisms. The imaginary part of electric modulus spectra was modeled using an approximate solution of Kohlrausch-Williams-Watts relation. The frequency dependent electrical conductivity was rationalized using Jonscher's power law. The activation energy associated with the dc conductivity was ascribed to the motion of Li+ ions in the glass matrix. The activation energy associated with dielectric relaxation was almost equal to that of the dc conductivity, indicating that the same species took part in both the processes. (C) 2010 Elsevier B.V. All rights reserved.