251 resultados para Spherical trigonometry.
Resumo:
A novel optical method is proposed and demonstrated, for real-time dimension estimation of thin opaque cylindrical objects. The methodology relies on free-space Fraunhofer diffraction principle. The central region, of such tailored diffraction pattern obtained under suitable choice of illumination conditions, comprises of a pair of `equal intensity maxima', whose separation remains constant and independent of the diameter of the diffracting object. An analysis of `the intensity distribution in this region' reveals the following. At a point symmetrically located between the said maxima, the light intensity varies characteristically with diameter of the diffracting object, exhibiting a relatively stronger intensity modulation under spherical wave illumination than under a plane wave illumination. The analysis reveals further, that the said intensity variation with diameter is controllable by the illumination conditions. Exploiting these `hitherto unexplored' features, the present communication reports for the first time, a reliable method of estimating diameter of thin opaque cylindrical objects in real-time, with nanometer resolution from single point intensity measurement. Based on the proposed methodology, results of few simulation and experimental investigations carried-out on metallic wires with diameters spanning the range of 5 to 50 mu m, are presented. The results show that proposed method is well-suited for high resolution on-line monitoring of ultrathin wire diameters, extensively used in micro-mechanics and semiconductor industries, where the conventional diffraction-based methods fail to produce accurate results.
Resumo:
A systematic investigation of monatomic spherical sorbates in the supercages of zeolites Y and A by molecular dynamics technique is presented. Rates of intercage diffusion, rates of cage visits, and the diffusion coefficients have been calculated as a function of the sorbate-zeolite interaction strength. These properties exhibit markedly different dependences on interaction strength for the two zeolites. The observed behavior is shown to be a consequence of the two principal mechanisms of intercage diffusion and the energetic barrier associated with them. The diffusion coefficient and other properties associated with intercage diffusion are found to be directly proportional to the reciprocal of the square of the sorbate diameter when the sorbate diameter is significantly smaller than the window diameter. As the sorbate diameter increases, a peak is observed in all the transport properties investigated including the diffusion coefficient. We call this surprising effect as the ring or levitation effect and it explains several anomalous results reported in the literature and suggests a breakdown of the geometrical criterion for diffusion of sorbates. It shows that under certain conditions nongeometrical factors play a major role and geometrical factors become secondary in the determination of the molecular sieve property. A generalized parameter has been proposed which suggests conditions under which one can expect the ring or levitation effect in any porous medium. Inverse size selectivity becomes operative under these conditions.
Resumo:
A theoretical analysis of the three currently popular microscopic theories of solvation dynamics, namely, the dynamic mean spherical approximation (DMSA), the molecular hydrodynamic theory (MHT), and the memory function theory (MFT) is carried out. It is shown that in the underdamped limit of momentum relaxation, all three theories lead to nearly identical results when the translational motions of both the solute ion and the solvent molecules are neglected. In this limit, the theoretical prediction is in almost perfect agreement with the computer simulation results of solvation dynamics in the model Stockmayer liquid. However, the situation changes significantly in the presence of the translational motion of the solvent molecules. In this case, DMSA breaks down but the other two theories correctly predict the acceleration of solvation in agreement with the simulation results. We find that the translational motion of a light solute ion can play an important role in its own solvation. None of the existing theories describe this aspect. A generalization of the extended hydrodynamic theory is presented which, for the first time, includes the contribution of solute motion towards its own solvation dynamics. The extended theory gives excellent agreement with the simulations where solute motion is allowed. It is further shown that in the absence of translation, the memory function theory of Fried and Mukamel can be recovered from the hydrodynamic equations if the wave vector dependent dissipative kernel in the hydrodynamic description is replaced by its long wavelength value. We suggest a convenient memory kernel which is superior to the limiting forms used in earlier descriptions. We also present an alternate, quite general, statistical mechanical expression for the time dependent solvation energy of an ion. This expression has remarkable similarity with that for the translational dielectric friction on a moving ion.
Resumo:
An exact representation of N-wave solutions for the non-planar Burgers equation u(t) + uu(x) + 1/2ju/t = 1/2deltau(xx), j = m/n, m < 2n, where m and n are positive integers with no common factors, is given. This solution is asymptotic to the inviscid solution for Absolute value of x < square-root (2Q0 t), where Q0 is a function of the initial lobe area, as lobe Reynolds number tends to infinity, and is also asymptotic to the old age linear solution, as t tends to infinity; the formulae for the lobe Reynolds numbers are shown to have the correct behaviour in these limits. The general results apply to all j = m/n, m < 2n, and are rather involved; explicit results are written out for j = 0, 1, 1/2, 1/3 and 1/4. The case of spherical symmetry j = 2 is found to be 'singular' and the general approach set forth here does not work; an alternative approach for this case gives the large time behaviour in two different time regimes. The results of this study are compared with those of Crighton & Scott (1979).
Resumo:
Extensive molecular dynamics simulations have been carried out to calculate the orientational correlation functions Cl(t), G(t) = [4n/(21 + l)]Ci=-l (Y*lm(sZ(0)) Ylm(Q(t))) (where Y,,(Q) are the spherical harmonics) of point dipoles in a cubic lattice. The decay of Cl(t) is found to be strikingly different from higher l-correlation functions-the latter do not exhibit diffusive dynamics even in the long time. Both the cumulant expansion expression of Lynden-Bell and the conventional memory function equation provide very good description of the Cl(t) in the short time but fail to reproduce the observed slow, long time decay of c1 (t) .
Resumo:
An important yet unsolved problem in the field of orientational relaxation in dipolar liquids is the dependence of the correlation functions C(l)(t), C(l)(t) = [4pi/(2l + 1)SIGMA(m = -l)l [Y(lm)(OMEGA(0)Y(lm)(OMEGA(t))] on the rank l (where Y(lm)(OMEGA) are the usual spherical harmonics). The existing theories on this effect differ in their predictions. To investigate this, we have carried out extensive computer simulations of a Brownian dipolar lattice. The dielectric friction was found to decrease rapidly with increasing l, in qualitative agreement with the predictions of Hubbard-Wolynes. However, the observed effect is much stronger than the predictions of the existing theories.
Resumo:
The physico-chemical, photo-physical and micro-structural properties responsible for the strikingly different photocatalytic behavior of combustion-prepared TiO2 (c.TiO2) and Degussa P25 (d.TiO2) samples are elucidated in this study. Electron microscopy and selected area electron diffraction micrographs revealed that the two samples exhibited different morphologies. The grains of c.TiO2 were spherical and comprised of 5-6 nm size primary particle. On the other hand, d.TiO2 consisted of large (0.5-3.0 mu m) size and irregular shape aggregates having primary particles of 15-40 nm cross-sectional diameter. The ESR study revealed that the presence of certain defect states in c.TiO2 helped in stabilization of O-. and Ti3+-OH type species during room-temperature UV-irradiation. No such paramagnetic species were however formed over d.TiO2 under similar conditions. C1s and Ti 2p XPS spectra provide evidence for the presence of some lattice vacancies in c.TiO2 and also for the bulk Ti4+ -> Ti3+ conversion during its UV-irradiation. Compared to d.TiO2, c.TiO2 displayed considerably higher activity for discoloration of methyl orange but very poor activity for splitting of water, both under UV and visible light radiations. This is attributed to enhanced surface adsorption of dye molecules over c.TiO2, because of its textural features and also the presence of photo-active ion-radicals. On the other hand, the poor activity of c.TiO2 for water splitting is related to certain defect-induced inter-band charge trapping states in the close vicinity of valence and conduction bands of c.TiO2, as revealed by thermoluminescence spectroscopy. Further, the dispersion of nanosize gold particles gave rise to augmented activity of both the catalysts, particularly for water splitting. This is explained by the promotional role of Au-0 or Au-0/TiO2 interfacial sites in the adsorption and charge-adsorbate interaction processes. (C) 2011 Elsevier B.V. All rights reserved.
Resumo:
The present investigation explores the adaptability of a microwave assisted route to obtain silver nanoparticles by the reduction of AgNO3 with vanillin, an environmentally benign material. Anionic surfactants such as AOT and SDS were used separately for encapsulating AgNPs and their role was compared. The UV-Visible absorption spectra present a broad SPR band consisting of two peaks suggesting the formation of silver nanoparticle with bimodal size distribution. The TEM image shows particles with spherical and hexagonal morphologies which confirms the results of UV-Vis studies. The anisotropy in the particle morphology can be attributed to the surface oxidation which in turn produces Ag@Ag2O core-shell nanostructures. Thus an intriguing feature of this system is that the obtained colloid is a mixture of AgNPs with and without Ag2O layers. Studies on the influence of pH on the stability of the synthesized nanoparticles revealed that the presence of excess Ag2O layers has a profound influence on it. Ag2O layers can be removed from AgNPs' surface by changing the solution pH to the acidic regime. The present study attests the enhanced ability of AOT in stabilizing the AgNPs in aqueous media. (C) 2011 Elsevier B.V. All rights reserved.
Resumo:
A swarm is a temporary structure formed when several thousand honey bees leave their hive and settle on some object such as the branch of a tree. They remain in this position until a suitable site for a new home is located by the scout bees. A continuum model based on heat conduction and heat generation is used to predict temperature profiles in swarms. Since internal convection is neglected, the model is applicable only at low values of the ambient temperature T-a. Guided by the experimental observations of Heinrich (1981a-c, J. Exp. Biol. 91, 25-55; Science 212, 565-566; Sci. Am. 244, 147-160), the analysis is carried out mainly for non-spherical swarms. The effective thermal conductivity is estimated using the data of Heinrich (1981a, J. Exp. Biol. 91, 25-55) for dead bees. For T-a = 5 and 9 degrees C, results based on a modified version of the heat generation function due to Southwick (1991, The Behaviour and Physiology of Bees, PP 28-47. C.A.B. International, London) are in reasonable agreement with measurements. Results obtained with the heat generation function of Myerscough (1993, J. Theor. Biol. 162, 381-393) are qualitatively similar to those obtained with Southwick's function, but the error is more in the former case. The results suggest that the bees near the periphery generate more heat than those near the core, in accord with the conjecture of Heinrich (1981c, Sci. Am. 244, 147-160). On the other hand, for T-a = 5 degrees C, the heat generation function of Omholt and Lonvik (1986, J. Theor. Biol. 120, 447-456) leads to a trivial steady state where the entire swarm is at the ambient temperature. Therefore an acceptable heat generation function must result in a steady state which is both non-trivial and stable with respect to small perturbations. Omholt and Lonvik's function satisfies the first requirement, but not the second. For T-a = 15 degrees C, there is a considerable difference between predicted and measured values, probably due to the neglect of internal convection in the model.
Resumo:
Stress wave characteristics are drastically altered by joints and other inhomogenities. This paper addresses the effect of an open joint on stress wave transmission. An elastodynamic analysis is developed to supplement and explain some recent observations by Fourney and Dick(1995) on open as well as filled joints. The analytical model developed here assuming spherical symmetry can be extended to filled joints between dissimilar media, but results are presented only for open joints separating identical materials. As a special case, stress wave transmission across a joint with no gap is also addressed.
Resumo:
Indexing of a decagonal quasicrystal using the scheme utilizing five planar vectors and one perpendicular to them is examined in detail. A method for determining the indices of zone axes that a reciprocal vector would make in a decagonal phase of any periodicity has been proposed. By this method, the location of the zone axes made by any reciprocal vector can be predicted. The orthogonality condition has been simplified for the zone axes containing twofold vectors. The locations of zone axes have also been determined by an alternative method, utilizing spherical trigonometric calculations, which confirm the zone-axis locations given by the indices. The effect of one-dimensional periodicity on the indices and the accuracy of the zone-axis determination is discussed. Rules for the formation of zone axes between several reciprocal vectors and the prediction of all the reciprocal vectors in a zone are evolved.
Resumo:
Mullite-zirconia composite powders were prepared by the combustion of an aqueous heterogeneous redox mixture consisting of Al(NO3)(3), Zr(NO3)(4)/ZrO(NO3)(2), silica fume and urea/diformyl hydrazine at 500 degrees C. X-ray diffraction data showed that a large amount of tetragonal zirconia existed in the composite powders in spite of high temperature calcination. Milled composite powders showed enhanced densification compared to the unmilled powders and the microstructure of the sintered (1600 degrees C) compacts showed the presence of spherical zirconia grains in intergranular positions along with elongated mullite grains.
Resumo:
Nonlinear finite element analysis is used for the estimation of damage due to low-velocity impact loading of laminated composite circular plates. The impact loading is treated as an equivalent static loading by assuming the impactor to be spherical and the contact to obey Hertzian law. The stresses in the laminate are calculated using a 48 d.o.f. laminated composite sector element. Subsequently, the Tsai-Wu criterion is used to detect the zones of failure and the maximum stress criterion is used to identify the mode of failure. Then the material properties of the laminate are degraded in the failed regions. The stress analysis is performed again using the degraded properties of the plies. The iterative process is repeated until no more failure is detected in the laminate. The problem of a typical T300/N5208 composite [45 degrees/0 degrees/-45 degrees/90 degrees](s) circular plate being impacted by a spherical impactor is solved and the results are compared with experimental and analytical results available in the literature. The method proposed and the computer code developed can handle symmetric, as well as unsymmetric, laminates. It can be easily extended to cover the impact of composite rectangular plates, shell panels and shells.
Resumo:
The flow and vaporization behaviors of long-chain esters of varying molecular weights (300-900) ana branching (linear, Y-shaped, and +-shaped molecules) have been studied. The flow behavior is found to depend on the structure as well as the molecular weight. Below a molecular weight of 600, the molecules flow wholly but above this, segmental motion occurs, and the flow becomes independent of the molecular weight which is explained from the blob model. The blob concept demonstrates that the hole of a size of about 11 angstrom is needed for the flow to occur and it is much less than the size of the molecule. The blob size is observed to slightly decrease along the series linear and Y- and +-branched esters. The heat of vaporization is found to be independent of the molecular structure since the molecules acquire a coiled spherical shape during vaporization and hence depends only on the molecular weight. A significant structural effect is observed for the esters on their glass transition temperature (T(g)). The T(g) vs molecular weight plot displays contrasting trend for linear and +-branched esters, with Y esters showing an intermediate behavior. It is explained from their molecular packing and entanglement as visualized by the blob model.
Resumo:
Nebulized spray pyrolysis provides a good low?temperature chemical route for preparing thin films of PbTiO3, (Pb0.9,La0.1)TiO3 and Pb(Zr0.52,Ti0.48)O3. The films are a? or c? axis oriented, with spherical grains of ?30 nm and give satisfactory P?E hysteresis loops. © 1995 American Institute of Physics.