120 resultados para Intractable Likelihood


Relevância:

10.00% 10.00%

Publicador:

Resumo:

Generalized spatial modulation (GSM) uses n(t) transmit antenna elements but fewer transmit radio frequency (RF) chains, n(rf). Spatial modulation (SM) and spatial multiplexing are special cases of GSM with n(rf) = 1 and n(rf) = n(t), respectively. In GSM, in addition to conveying information bits through n(rf) conventional modulation symbols (for example, QAM), the indices of the n(rf) active transmit antennas also convey information bits. In this paper, we investigate GSM for large-scale multiuser MIMO communications on the uplink. Our contributions in this paper include: 1) an average bit error probability (ABEP) analysis for maximum-likelihood detection in multiuser GSM-MIMO on the uplink, where we derive an upper bound on the ABEP, and 2) low-complexity algorithms for GSM-MIMO signal detection and channel estimation at the base station receiver based on message passing. The analytical upper bounds on the ABEP are found to be tight at moderate to high signal-to-noise ratios (SNR). The proposed receiver algorithms are found to scale very well in complexity while achieving near-optimal performance in large dimensions. Simulation results show that, for the same spectral efficiency, multiuser GSM-MIMO can outperform multiuser SM-MIMO as well as conventional multiuser MIMO, by about 2 to 9 dB at a bit error rate of 10(-3). Such SNR gains in GSM-MIMO compared to SM-MIMO and conventional MIMO can be attributed to the fact that, because of a larger number of spatial index bits, GSM-MIMO can use a lower-order QAM alphabet which is more power efficient.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

The objective of this paper was to develop the seismic hazard maps of Patna district considering the region-specific maximum magnitude and ground motion prediction equation (GMPEs) by worst-case deterministic and classical probabilistic approaches. Patna, located near Himalayan active seismic region has been subjected to destructive earthquakes such as 1803 and 1934 Bihar-Nepal earthquakes. Based on the past seismicity and earthquake damage distribution, linear sources and seismic events have been considered at radius of about 500 km around Patna district center. Maximum magnitude (M (max)) has been estimated based on the conventional approaches such as maximum observed magnitude (M (max) (obs) ) and/or increment of 0.5, Kijko method and regional rupture characteristics. Maximum of these three is taken as maximum probable magnitude for each source. Twenty-seven ground motion prediction equations (GMPEs) are found applicable for Patna region. Of these, suitable region-specific GMPEs are selected by performing the `efficacy test,' which makes use of log-likelihood. Maximum magnitude and selected GMPEs are used to estimate PGA and spectral acceleration at 0.2 and 1 s and mapped for worst-case deterministic approach and 2 and 10 % period of exceedance in 50 years. Furthermore, seismic hazard results are used to develop the deaggregation plot to quantify the contribution of seismic sources in terms of magnitude and distance. In this study, normalized site-specific design spectrum has been developed by dividing the hazard map into four zones based on the peak ground acceleration values. This site-specific response spectrum has been compared with recent Sikkim 2011 earthquake and Indian seismic code IS1893.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

In this paper, we consider spatial modulation (SM) operating in a frequency-selective single-carrier (SC) communication scenario and propose zero-padding instead of the cyclic-prefix considered in the existing literature. We show that the zero-padded single-carrier (ZP-SC) SM system offers full multipath diversity under maximum-likelihood (ML) detection, unlike the cyclic-prefix based SM system. Furthermore, we show that the order of ML detection complexity in our proposed ZP-SC SM system is independent of the frame length and depends only on the number of multipath links between the transmitter and the receiver. Thus, we show that the zero-padding applied in the SC SM system has two advantages over the cyclic prefix: 1) achieves full multipath diversity, and 2) imposes a relatively low ML detection complexity. Furthermore, we extend the partial interference cancellation receiver (PIC-R) proposed by Guo and Xia for the detection of space-time block codes (STBCs) in order to convert the ZP-SC system into a set of narrowband subsystems experiencing flat-fading. We show that full rank STBC transmissions over these subsystems achieves full transmit, receive as well as multipath diversity for the PIC-R. Furthermore, we show that the ZP-SC SM system achieves receive and multipath diversity for the PIC-R at a detection complexity order which is the same as that of the SM system in flat-fading scenario. Our simulation results demonstrate that the symbol error ratio performance of the proposed linear receiver for the ZP-SC SM system is significantly better than that of the SM in cyclic prefix based orthogonal frequency division multiplexing as well as of the SM in the cyclic-prefixed and zero-padded single carrier systems relying on zero-forcing/minimum mean-squared error equalizer based receivers.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

The 2011 outburst of the black hole candidate IGR J17091-3624 followed the canonical track of state transitions along with the evolution of quasi-periodic oscillation (QPO) frequencies before it began exhibiting various variability classes similar to GRS 1915+105. We use this canonical evolution of spectral and temporal properties to determine the mass of IGR J17091-3624, using three different methods: photon index (Gamma)-QPO frequency (nu) correlation, QPO frequency (nu)-time (day) evolution, and broadband spectral modeling based on two-component advective flow (TCAF). We provide a combined mass estimate for the source using a naive Bayes based joint likelihood approach. This gives a probable mass range of 11.8 M-circle dot-13.7 M-circle dot. Considering each individual estimate and taking the lowermost and uppermost bounds among all three methods, we get a mass range of 8.7 M-circle dot-15.6 M-circle dot with 90% confidence. We discuss the possible implications of our findings in the context of two-component accretion flow.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Breast cancer is one of the leading cause of cancer related deaths in women and early detection is crucial for reducing mortality rates. In this paper, we present a novel and fully automated approach based on tissue transition analysis for lesion detection in breast ultrasound images. Every candidate pixel is classified as belonging to the lesion boundary, lesion interior or normal tissue based on its descriptor value. The tissue transitions are modeled using a Markov chain to estimate the likelihood of a candidate lesion region. Experimental evaluation on a clinical dataset of 135 images show that the proposed approach can achieve high sensitivity (95 %) with modest (3) false positives per image. The approach achieves very similar results (94 % for 3 false positives) on a completely different clinical dataset of 159 images without retraining, highlighting the robustness of the approach.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Local polynomial approximation of data is an approach towards signal denoising. Savitzky-Golay (SG) filters are finite-impulse-response kernels, which convolve with the data to result in polynomial approximation for a chosen set of filter parameters. In the case of noise following Gaussian statistics, minimization of mean-squared error (MSE) between noisy signal and its polynomial approximation is optimum in the maximum-likelihood (ML) sense but the MSE criterion is not optimal for non-Gaussian noise conditions. In this paper, we robustify the SG filter for applications involving noise following a heavy-tailed distribution. The optimal filtering criterion is achieved by l(1) norm minimization of error through iteratively reweighted least-squares (IRLS) technique. It is interesting to note that at any stage of the iteration, we solve a weighted SG filter by minimizing l(2) norm but the process converges to l(1) minimized output. The results show consistent improvement over the standard SG filter performance.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Two-dimensional magnetic recording (2-D TDMR) is an emerging technology that aims to achieve areal densities as high as 10 Tb/in(2) using sophisticated 2-D signal-processing algorithms. High areal densities are achieved by reducing the size of a bit to the order of the size of magnetic grains, resulting in severe 2-D intersymbol interference (ISI). Jitter noise due to irregular grain positions on the magnetic medium is more pronounced at these areal densities. Therefore, a viable read-channel architecture for TDMR requires 2-D signal-detection algorithms that can mitigate 2-D ISI and combat noise comprising jitter and electronic components. Partial response maximum likelihood (PRML) detection scheme allows controlled ISI as seen by the detector. With the controlled and reduced span of 2-D ISI, the PRML scheme overcomes practical difficulties such as Nyquist rate signaling required for full response 2-D equalization. As in the case of 1-D magnetic recording, jitter noise can be handled using a data-dependent noise-prediction (DDNP) filter bank within a 2-D signal-detection engine. The contributions of this paper are threefold: 1) we empirically study the jitter noise characteristics in TDMR as a function of grain density using a Voronoi-based granular media model; 2) we develop a 2-D DDNP algorithm to handle the media noise seen in TDMR; and 3) we also develop techniques to design 2-D separable and nonseparable targets for generalized partial response equalization for TDMR. This can be used along with a 2-D signal-detection algorithm. The DDNP algorithm is observed to give a 2.5 dB gain in SNR over uncoded data compared with the noise predictive maximum likelihood detection for the same choice of channel model parameters to achieve a channel bit density of 1.3 Tb/in(2) with media grain center-to-center distance of 10 nm. The DDNP algorithm is observed to give similar to 10% gain in areal density near 5 grains/bit. The proposed signal-processing framework can broadly scale to various TDMR realizations and areal density points.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

In this paper, we have proposed an anomaly detection algorithm based on Histogram of Oriented Motion Vectors (HOMV) 1] in sparse representation framework. Usual behavior is learned at each location by sparsely representing the HOMVs over learnt normal feature bases obtained using an online dictionary learning algorithm. In the end, anomaly is detected based on the likelihood of the occurrence of sparse coefficients at that location. The proposed approach is found to be robust compared to existing methods as demonstrated in the experiments on UCSD Ped1 and UCSD Ped2 datasets.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Selection of relevant features is an open problem in Brain-computer interfacing (BCI) research. Sometimes, features extracted from brain signals are high dimensional which in turn affects the accuracy of the classifier. Selection of the most relevant features improves the performance of the classifier and reduces the computational cost of the system. In this study, we have used a combination of Bacterial Foraging Optimization and Learning Automata to determine the best subset of features from a given motor imagery electroencephalography (EEG) based BCI dataset. Here, we have employed Discrete Wavelet Transform to obtain a high dimensional feature set and classified it by Distance Likelihood Ratio Test. Our proposed feature selector produced an accuracy of 80.291% in 216 seconds.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Northeast India and its adjoining areas are characterized by very high seismic activity. According to the Indian seismic code, the region falls under seismic zone V, which represents the highest seismic-hazard level in the country. This region has experienced a number of great earthquakes, such as the Assam (1950) and Shillong (1897) earthquakes, that caused huge devastation in the entire northeast and adjacent areas by flooding, landslides, liquefaction, and damage to roads and buildings. In this study, an attempt has been made to find the probability of occurrence of a major earthquake (M-w > 6) in this region using an updated earthquake catalog collected from different sources. Thereafter, dividing the catalog into six different seismic regions based on different tectonic features and seismogenic factors, the probability of occurrences was estimated using three models: the lognormal, Weibull, and gamma distributions. We calculated the logarithmic probability of the likelihood function (ln L) for all six regions and the entire northeast for all three stochastic models. A higher value of ln L suggests a better model, and a lower value shows a worse model. The results show different model suits for different seismic zones, but the majority follows lognormal, which is better for forecasting magnitude size. According to the results, Weibull shows the highest conditional probabilities among the three models for small as well as large elapsed time T and time intervals t, whereas the lognormal model shows the lowest and the gamma model shows intermediate probabilities. Only for elapsed time T = 0, the lognormal model shows the highest conditional probabilities among the three models at a smaller time interval (t = 3-15 yrs). The opposite result is observed at larger time intervals (t = 15-25 yrs), which show the highest probabilities for the Weibull model. However, based on this study, the IndoBurma Range and Eastern Himalaya show a high probability of occurrence in the 5 yr period 2012-2017 with >90% probability.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

We propose and demonstrate a limited-view light sheet microscopy (LV-LSM) for three dimensional (3D) volume imaging. Realizing that longer and frequent image acquisition results in significant photo-bleaching, we have taken limited angular views (18 views) of the macroscopic specimen and integrated with maximum likelihood (ML) technique for reconstructing high quality 3D volume images. Existing variants of light-sheet microscopy require both rotation and translation with a total of approximately 10-fold more views to render a 3D volume image. Comparatively, LV-LSM technique reduces data acquisition time and consequently minimizes light-exposure by many-folds. Since ML is a post-processing technique and highly parallelizable, this does not cost precious imaging time. Results show noise-free and high contrast volume images when compared to the state-of-the-art selective plane illumination microscopy. (C) 2015 AIP Publishing LLC.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Speech enhancement in stationary noise is addressed using the ideal channel selection framework. In order to estimate the binary mask, we propose to classify each time-frequency (T-F) bin of the noisy signal as speech or noise using Discriminative Random Fields (DRF). The DRF function contains two terms - an enhancement function and a smoothing term. On each T-F bin, we propose to use an enhancement function based on likelihood ratio test for speech presence, while Ising model is used as smoothing function for spectro-temporal continuity in the estimated binary mask. The effect of the smoothing function over successive iterations is found to reduce musical noise as opposed to using only enhancement function. The binary mask is inferred from the noisy signal using Iterated Conditional Modes (ICM) algorithm. Sentences from NOIZEUS corpus are evaluated from 0 dB to 15 dB Signal to Noise Ratio (SNR) in 4 kinds of additive noise settings: additive white Gaussian noise, car noise, street noise and pink noise. The reconstructed speech using the proposed technique is evaluated in terms of average segmental SNR, Perceptual Evaluation of Speech Quality (PESQ) and Mean opinion Score (MOS).

Relevância:

10.00% 10.00%

Publicador:

Resumo:

We begin by providing observational evidence that the probability of encountering very high and very low annual tropical rainfall has increased significantly in the most recent decade (1998-present) compared with the preceding warming era (1979-1997). These changes over land and ocean are spatially coherent and comprise a rearrangement of very wet regions and a systematic expansion of dry zones. While the increased likelihood of extremes is consistent with a higher average temperature during the pause (compared with 1979-1997), it is important to note that the periods considered are also characterized by a transition from a relatively warm to a cold phase of the El Nino Southern Oscillation (ENSO). To probe the relation between contrasting phases of ENSO and extremes in accumulation further, a similar comparison is performed between 1960 and 1978 (another extended cold phase of ENSO) and the aforementioned warming era. Though limited by land-only observations, in this cold-to-warm transition, remarkably, a near-exact reversal of extremes is noted both statistically and geographically. This is despite the average temperature being higher in 1979-1997 compared with 1960-1978. Taking this evidence together, we propose that there is a fundamental mode of natural variability, involving the waxing and waning of extremes in accumulation of global tropical rainfall with different phases of ENSO.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Human detection is a complex problem owing to the variable pose that they can adopt. Here, we address this problem in sparse representation framework with an overcomplete scale-embedded dictionary. Histogram of oriented gradient features extracted from the candidate image patches are sparsely represented by the dictionary that contain positive bases along with negative and trivial bases. The object is detected based on the proposed likelihood measure obtained from the distribution of these sparse coefficients. The likelihood is obtained as the ratio of contribution of positive bases to negative and trivial bases. The positive bases of the dictionary represent the object (human) at various scales. This enables us to detect the object at any scale in one shot and avoids multiple scanning at different scales. This significantly reduces the computational complexity of detection task. In addition to human detection, it also finds the scale at which the human is detected due to the scale-embedded structure of the dictionary.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

The Restricted Boltzmann Machines (RBM) can be used either as classifiers or as generative models. The quality of the generative RBM is measured through the average log-likelihood on test data. Due to the high computational complexity of evaluating the partition function, exact calculation of test log-likelihood is very difficult. In recent years some estimation methods are suggested for approximate computation of test log-likelihood. In this paper we present an empirical comparison of the main estimation methods, namely, the AIS algorithm for estimating the partition function, the CSL method for directly estimating the log-likelihood, and the RAISE algorithm that combines these two ideas.