150 resultados para cosmologia, clustering, AP-test


Relevância:

20.00% 20.00%

Publicador:

Resumo:

Abstract—DC testing of parametric faults in non-linear analog circuits based on a new transformation, entitled, V-Transform acting on polynomial coefficient expansion of the circuit function is presented. V-Transform serves the dual purpose of monotonizing polynomial coefficients of circuit function expansion and increasing the sensitivity of these coefficients to circuit parameters. The sensitivity of V-Transform Coefficients (VTC) to circuit parameters is up to 3x-5x more than sensitivity of polynomial coefficients. As a case study, we consider a benchmark elliptic filter to validate our method. The technique is shown to uncover hitherto untestable parametric faults whose sizes are smaller than 10 % of the nominal values. I.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Scan circuit is widely practiced DFT technology. The scan testing procedure consist of state initialization, test application, response capture and observation process. During the state initialization process the scan vectors are shifted into the scan cells and simultaneously the responses captured in last cycle are shifted out. During this shift operation the transitions that arise in the scan cells are propagated to the combinational circuit, which inturn create many more toggling activities in the combinational block and hence increases the dynamic power consumption. The dynamic power consumed during scan shift operation is much more higher than that of normal mode operation.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Advertisements(Ads) are the main revenue earner for Television (TV) broadcasters. As TV reaches a large audience, it acts as the best media for advertisements of products and services. With the emergence of digital TV, it is important for the broadcasters to provide an intelligent service according to the various dimensions like program features, ad features, viewers’ interest and sponsors’ preference. We present an automatic ad recommendation algorithm that selects a set of ads by considering these dimensions and semantically match them with programs. Features of the ad video are captured interms of annotations and they are grouped into number of predefined semantic categories by using a categorization technique. Fuzzy categorical data clustering technique is applied on categorized data for selecting better suited ads for a particular program. Since the same ad can be recommended for more than one program depending upon multiple parameters, fuzzy clustering acts as the best suited method for ad recommendation. The relative fuzzy score called “degree of membership” calculated for each ad indicates the membership of a particular ad to different program clusters. Subjective evaluation of the algorithm is done by 10 different people and rated with a high success score.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Support Vector Clustering has gained reasonable attention from the researchers in exploratory data analysis due to firm theoretical foundation in statistical learning theory. Hard Partitioning of the data set achieved by support vector clustering may not be acceptable in real world scenarios. Rough Support Vector Clustering is an extension of Support Vector Clustering to attain a soft partitioning of the data set. But the Quadratic Programming Problem involved in Rough Support Vector Clustering makes it computationally expensive to handle large datasets. In this paper, we propose Rough Core Vector Clustering algorithm which is a computationally efficient realization of Rough Support Vector Clustering. Here Rough Support Vector Clustering problem is formulated using an approximate Minimum Enclosing Ball problem and is solved using an approximate Minimum Enclosing Ball finding algorithm. Experiments done with several Large Multi class datasets such as Forest cover type, and other Multi class datasets taken from LIBSVM page shows that the proposed strategy is efficient, finds meaningful soft cluster abstractions which provide a superior generalization performance than the SVM classifier.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Applications in various domains often lead to very large and frequently high-dimensional data. Successful algorithms must avoid the curse of dimensionality but at the same time should be computationally efficient. Finding useful patterns in large datasets has attracted considerable interest recently. The primary goal of the paper is to implement an efficient Hybrid Tree based clustering method based on CF-Tree and KD-Tree, and combine the clustering methods with KNN-Classification. The implementation of the algorithm involves many issues like good accuracy, less space and less time. We will evaluate the time and space efficiency, data input order sensitivity, and clustering quality through several experiments.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

A built-in-self-test (BIST) subsystem embedded in a 65-nm mobile broadcast video receiver is described. The subsystem is designed to perform analog and RF measurements at multiple internal nodes of the receiver. It uses a distributed network of CMOS sensors and a low bandwidth, 12-bit A/D converter to perform the measurements with a serial bus interface enabling a digital transfer of measured data to automatic test equipment (ATE). A perturbation/correlation based BIST method is described, which makes pass/fail determination on parts, resulting in significant test time and cost reduction.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Clustering techniques are used in regional flood frequency analysis (RFFA) to partition watersheds into natural groups or regions with similar hydrologic responses. The linear Kohonen's self‐organizing feature map (SOFM) has been applied as a clustering technique for RFFA in several recent studies. However, it is seldom possible to interpret clusters from the output of an SOFM, irrespective of its size and dimensionality. In this study, we demonstrate that SOFMs may, however, serve as a useful precursor to clustering algorithms. We present a two‐level. SOFM‐based clustering approach to form regions for FFA. In the first level, the SOFM is used to form a two‐dimensional feature map. In the second level, the output nodes of SOFM are clustered using Fuzzy c‐means algorithm to form regions. The optimal number of regions is based on fuzzy cluster validation measures. Effectiveness of the proposed approach in forming homogeneous regions for FFA is illustrated through application to data from watersheds in Indiana, USA. Results show that the performance of the proposed approach to form regions is better than that based on classical SOFM.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

This paper presents a novel Second Order Cone Programming (SOCP) formulation for large scale binary classification tasks. Assuming that the class conditional densities are mixture distributions, where each component of the mixture has a spherical covariance, the second order statistics of the components can be estimated efficiently using clustering algorithms like BIRCH. For each cluster, the second order moments are used to derive a second order cone constraint via a Chebyshev-Cantelli inequality. This constraint ensures that any data point in the cluster is classified correctly with a high probability. This leads to a large margin SOCP formulation whose size depends on the number of clusters rather than the number of training data points. Hence, the proposed formulation scales well for large datasets when compared to the state-of-the-art classifiers, Support Vector Machines (SVMs). Experiments on real world and synthetic datasets show that the proposed algorithm outperforms SVM solvers in terms of training time and achieves similar accuracies.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

A method of precise measurement of on-chip analog voltages in a mostly-digital manner, with minimal overhead, is presented. A pair of clock signals is routed to the node of an analog voltage. This analog voltage controls the delay between this pair of clock signals, which is then measured in an all-digital manner using the technique of sub-sampling. This sub-sampling technique, having measurement time and accuracy trade-off, is well suited for low bandwidth signals. This concept is validated by designing delay cells, using current starved inverters in UMC 130nm CMOS process. Sub-mV accuracy is demonstrated for a measurement time of few seconds.