174 resultados para PEPTIDES
Resumo:
Synthesis of two designed hairpin peptides on 1,6-hexanediol diacrylate crosslinked polystyrene support using the standard solid phase methodology is described. Both the peptides are obtained in high yield and purity. The new polymeric system is an ideal support for the synthesis of hairpin peptides, which is a very difficult task by the solid phase method.
Resumo:
The prop-2-ynyloxy carbonyl function (POC) which can be cleaved under mild and neutral conditions in the presence of benzyltriethylammonium tetrathiomolybdate has been developed as a new protecting group for amines. (C) 1999 Elsevier Science Ltd. All rights reserved.
Resumo:
Synthesis of short peptides using propargyloxycarbonyl amino acid chlorides as effective coupling reagents and polymer supported tetrathiomolybdate as an efficient deblocking agent are reported.
Resumo:
Selective modification of the C-terminal amide in peptides to dihydrooxazine (a novel stable imidate isostere) by intramolecular nucleophilic cyclo-O-alkylation of the corresponding N-(3-bromopropyl)amides results in constraining of the C-terminal residue in natively disallowed conformations both in crystals and in solution.
Resumo:
Abstract | Molecular self-assembly plays a vital role in the construction of various nanostructures using the ‘bottom-up’ approach. Peptides have been considered important bio-molecular building blocks for different nanoscale structures as they are biocompatible, biodegradable, generally non-toxic and can be attuned to environmental responses like pH, temperature, salt concentration and others. Peptide based nanostructures can offer various wonderful biological applications in tissue engineering, cell culture, regenerative medicine and drug delivery. In this review, the construction of short peptide-based different nanostructures including nanotubes, nanovesicles and nanofibers, short peptide-based nanoporous materials, short peptide-based nanofibrous hydrogels and nanovesicles for various biological applications has been discussed. Moreover, morphological transformations from one nanoscopic structure to an other type of nanostructure (e.g., nanotubes to nanovesicles) are also clearly discussed in this review.
Resumo:
Developments and applications of NMR spectroscopy especially with biomolecules has taken big strides over the decades. This review gives a brief overview of peptide analysis by NMR as carried out in the author’s laboratory. A brief introduction to peptide biomolecules and NMR useful parameters are discussed in the beginning. This is followed by diagnostics features observed in NMR for identification of secondary structures. It further goes on to show how a three dimensional structure could be obtained by all-important NOE and hydrogen bond information. Use of heteronuclear experiments, which could be done at natural abundance is also highlighted in getting more details of peptide structures.Applications using Solid state NMR at natural abundance in connecting peptide solution and x-ray structures is demonstrated with couple of examples.
Resumo:
The Aib-(D)Ala dipeptide segment has a tendency to form both type-I'/III' and type-I/III beta-turns. The occurrence of prime turns facilitates the formation of beta-hairpin conformations, while type-I/III turns can nucleate helix formation. The octapeptide Boc-Leu-Phe-Val-Aib-(D)Ala-Leu-Phe-Val-OMe (1) has been previously shown to form a beta-hairpin in the crystalline state and in solution. The effects of sequence truncation have been examined using the model peptides Boc-Phe-Val-Aib-Xxx-Leu-Phe-NHMe (2, 6), Boc-Val-Aib-Xxx-Leu-NHMe (3, 7), and Boc-Aib-Xxx-NHMe (4, 8), where Xxx = (D)Ala, Aib. For peptides with central Aib-Aib segments, Boc-Phe-Val-Aib-Aib-Leu-Phe-NHMe (6), Boc-Val-Aib-Aib-Leu-NHMe (7), and Boc-Aib-Aib-NHMe (8) helical conformations have been established by NMR studies in both hydrogen bonding (CD(3)OH) and non-hydrogen bonding (CDCl(3)) solvents. In contrast, the corresponding hexapeptide Boc-Phe-Val-Aib-(D)Ala-Leu-Phe-Val-NHMe (2) favors helical conformations in CDCl(3) and beta-hairpin conformations in CD(3)OH. The beta-turn conformations (type-I'/III) stabilized by intramolecular 4 -> 1 hydrogen bonds are observed for the peptide Boc-Aib-(D)Ala-NHMe (4) and Boc-Aib-Aib-NIiMe (8) in crystals. The tetrapeptide Boc-Val-Aib-Aib-Leu-NHMe (7) adopts an incipient 3(10)-helical conformation stabilized by three 4 -> 1 hydrogen bonds. The peptide Boc-Val-Aib-(D)Ala-Leu-NHMe (3) adopts a novel et-turn conformation, stabilized by three intramolecular hydrogen bonds (two 4 -> 1 and one 5 -> 1). The Aib-L(D)Ala segment adopts a type-I' beta-turn conformation. The observation of an NOE between Val (1) NH <-> HNCH(3) (5) in CD(3)OH suggests, that the solid state conformation is maintained in methanol solutions. (C) 2011 Wiley Periodicals, Inc. Biopolymers (Pept Sci) 96: 744-756, 2011.
Resumo:
The effect of incorporation of a centrally positioned Ac(6)c-Xxx segment where Xxx = (L)Val/(D)Val into a host oligopeptide composed of L-amino acid residues has been investigated. Studies of four designed octapeptides Boc-Leu-Phe-Val-Ac(6)c-Xxx-Leu-Phe-Val-OMe (Xxx = (D)Val 1, (L)Val 2) Boc-Leu-Val-Val-Ac(6)c-Xxx-Leu-Val-Val-OMe (Xxx = (D)Val 3, (L)Val 4) are reported. Diagnostic nuclear Overhouse effects characteristic of hairpin conformations are observed for Xxx = (D)Val peptides (1 and 3) while continuous helical conformation characterized by sequential NiH <-> Ni+1H NOEs are favored for Xxx = (L)Val peptides (2 and 4) in methanol solutions. Temperature co-efficient of NH chemical shifts are in agreement with distinctly different conformational preferences upon changing the configuration of the residue at position 5. Crystal structures of peptides 2 and 4 (Xxx = (L)Val) establish helical conformations in the solid state, in agreement with the structures deduced from NMR data. The results support the design principle that centrally positioned type I beta-turns may be used to nucleate helices in short peptides, while type I' beta-turns can facilitate folding into beta-hairpins.
Resumo:
The effect of gem-dialkyl substituents on the backbone conformations of beta-amino acid residues in peptides has been investigated by using four model peptides: Boc-Xxx-beta 2,2Ac6c(1-aminomethylcyclohexanecarboxylic acid)-NHMe (Xxx=Leu (1), Phe (2); Boc=tert-butyloxycarbonyl) and Boc-Xxx-beta 3,3Ac6c(1-aminocyclohexaneacetic acid)-NHMe (Xxx=Leu (3), Phe (4)). Tetrasubstituted carbon atoms restrict the ranges of stereochemically allowed conformations about flanking single bonds. The crystal structure of Boc-Leu-beta 2,2Ac6c-NHMe (1) established a C11 hydrogen-bonded turn in the a beta-hybrid sequence. The observed torsion angles (a(similar to-60 degrees, similar to-30 degrees), beta(similar to-90 degrees, similar to 60 degrees, similar to-90 degrees)) corresponded to a C11 helical turn, which was a backbone-expanded analogue of the type III beta turn in aa sequences. The crystal structure of the peptide Boc-Phe-beta 3,3Ac6c-NHMe (4) established a C11 hydrogen-bonded turn with distinctly different backbone torsion angles (a(similar to-60 degrees, similar to 120 degrees), beta(similar to 60 degrees, ?60 degrees, similar to-60 degrees)), which corresponded to a backbone-expanded analogue of the type II beta turn observed in aa sequences. In peptide 4, the two molecules in the asymmetric unit adopted backbone torsion angles of opposite signs. In one of the molecules, the Phe residue adopted an unfavorable backbone conformation, with the energetic penalty being offset by a favorable aromatic interaction between proximal molecules in the crystal. NMR spectroscopy studies provided evidence for the maintenance of folded structures in solution in these a beta-hybrid sequences.
Resumo:
Learning your αβγ's: The diversity of hydrogen-bonding patterns in backbone-expanded hybrid helices is shown by crystal-structure determination of several oligomeric peptides (see scheme; C=gray; H=white; O=red; N=blue). C 12 helices were observed in the αγ peptide series for n=2-8. In comparison, the αα peptide and αβ peptide sequences show C 10 and mixed C 14/C 15 helices, respectively. Copyright © 2012 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.
Resumo:
Backbone alkylation has been shown to result in a dramatic reduction in the conformational space that is sterically accessible to a-amino acid residues in peptides. By extension, the presence of geminal dialkyl substituents at backbone atoms also restricts available conformational space for beta and ? residues. Five peptides containing the achiral beta 2,2-disubstituted beta-amino acid residue, 1-(aminomethyl)cyclohexanecarboxylic acid (beta 2,2Ac6c), have been structurally characterized in crystals by X-ray diffraction. The tripeptide Boc-Aib-beta 2,2Ac6c-Aib-OMe (1) adopts a novel fold stabilized by two intramolecular H-bonds (C11 and C9) of opposite directionality. The tetrapeptide Boc-Aib-beta 2,2Ac6c]2-OMe (2) and pentapeptide Boc-Aib-beta 2,2Ac6c]2-Aib-OMe (3) form short stretches of a hybrid a beta C11 helix stabilized by two and three intramolecular H-bonds, respectively. The structure of the dipeptide Boc-Aib-beta 2,2Ac6c-OMe (5) does not reveal any intramolecular H-bond. The aggregation pattern in the crystal provides an example of an extended conformation of the beta 2,2Ac6c residue, forming a polar sheet like H-bond. The protected derivative Ac-beta 2,2Ac6c-NHMe (4) adopts a locally folded gauche conformation about the C beta?Ca bonds (?=-55.7 degrees). Of the seven examples of beta 2,2Ac6c residues reported here, six adopt gauche conformations, a feature which promotes local folding when incorporated into peptides. A comparison between the conformational properties of beta 2,2Ac6c and beta 3,3Ac6c residues, in peptides, is presented. Backbone torsional parameters of H-bonded a beta/beta a turns are derived from the structures presented in this study and earlier reports.
Resumo:
hIAPP fibrillization implicated in Type 2 diabetes pathology involves formation of oligomers toxic to insulin producing pancreatic beta-cells. We report design, synthesis, 3D structure and functional characterization of dehydrophenylalanine (Delta F) containing peptides which inhibit hIAPP fibrillization. The inhibitor protects beta-cells from hIAPP induced toxicity.
Resumo:
Disulfide crosslinks are ubiquitous in natural peptides and proteins, providing rigidity to polypeptide scaffolds. The assignment of disulfide connectivity in multiple crosslinked systems is often difficult to achieve. Here, we show that rapid unambiguous characterisation of disulfide connectivity can be achieved through direct mass spectrometric CID fragmentation of the disulfide intact polypeptides. The method requires a direct mass spectrometric fragmentation of the native disulfide bonded polypeptides and subsequent analysis using a newly developed program, DisConnect. Technical difficulties involving direct fragmentation of proteins are surmounted by an initial proteolytic nick and subsequent determination of the structures of these proteolytic peptides through DisConnect. While the connectivity in proteolytic fragments containing one cystine is evident from the MS profile alone, those with multiple cystines are subjected to subsequent mass spectrometric fragmentation. The wide applicability of this method is illustrated using examples of peptide hormones, peptide toxins, proteins, and disulfide foldamers of a synthetic analogue of a marine peptide toxin. The method, coupled with DisConnect, provides an unambiguous, straightforward approach, especially useful for the rapid screening of the disulfide crosslink fidelity in recombinant proteins, determination of disulfide linkages in natural peptide toxins and characterization of folding intermediates encountered in oxidative folding pathways.