152 resultados para Circuits neuronaux


Relevância:

10.00% 10.00%

Publicador:

Resumo:

Technology scaling has caused Negative Bias Temperature Instability (NBTI) to emerge as a major circuit reliability concern. Simultaneously leakage power is becoming a greater fraction of the total power dissipated by logic circuits. As both NBTI and leakage power are highly dependent on vectors applied at the circuit’s inputs, they can be minimized by applying carefully chosen input vectors during periods when the circuit is in standby or idle mode. Unfortunately input vectors that minimize leakage power are not the ones that minimize NBTI degradation, so there is a need for a methodology to generate input vectors that minimize both of these variables.This paper proposes such a systematic methodology for the generation of input vectors which minimize leakage power under the constraint that NBTI degradation does not exceed a specified limit. These input vectors can be applied at the primary inputs of a circuit when it is in standby/idle mode and are such that the gates dissipate only a small amount of leakage power and also allow a large majority of the transistors on critical paths to be in the “recovery” phase of NBTI degradation. The advantage of this methodology is that allowing circuit designers to constrain NBTI degradation to below a specified limit enables tighter guardbanding, increasing performance. Our methodology guarantees that the generated input vector dissipates the least leakage power among all the input vectors that satisfy the degradation constraint. We formulate the problem as a zero-one integer linear program and show that this formulation produces input vectors whose leakage power is within 1% of a minimum leakage vector selected by a search algorithm and simultaneously reduces NBTI by about 5.75% of maximum circuit delay as compared to the worst case NBTI degradation. Our paper also proposes two new algorithms for the identification of circuit paths that are affected the most by NBTI degradation. The number of such paths identified by our algorithms are an order of magnitude fewer than previously proposed heuristics.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

The paper propose a unified error detection technique, based on stability checking, for on-line detection of delay, crosstalk and transient faults in combinational circuits and SEUs in sequential elements. The proposed method, called modified stability checking (MSC), overcomes the limitations of the earlier stability checking methods. The paper also proposed a novel checker circuit to realize this scheme. The checker is self-checking for a wide set of realistic internal faults including transient faults. Extensive circuit simulations have been done to characterize the checker circuit. A prototype checker circuit for a 1mm2 standard cell array has been implemented in a 0.13mum process.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

A built-in-self-test (BIST) subsystem embedded in a 65-nm mobile broadcast video receiver is described. The subsystem is designed to perform analog and RF measurements at multiple internal nodes of the receiver. It uses a distributed network of CMOS sensors and a low bandwidth, 12-bit A/D converter to perform the measurements with a serial bus interface enabling a digital transfer of measured data to automatic test equipment (ATE). A perturbation/correlation based BIST method is described, which makes pass/fail determination on parts, resulting in significant test time and cost reduction.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Active-clamp dc-dc converters are pulsewidth-modulated converters having two switches featuring zero-voltage switching at frequencies beyond 100 kHz. Generalized equivalent circuits valid for steady-state and dynamic performance have been proposed for the family of active-clamp converters. The active-clamp converter is analyzed for its dynamic behavior under current control in this paper. The steady-state stability analysis is presented. On account of the lossless damping inherent in the active-clamp converters, it appears that the stability region in the current-controlled active-clamp converters get extended for duty ratios, a little greater than 0.5 unlike in conventional hard-switched converters. The conventional graphical approach fails to assess the stability of current-controlled active-clamp converters, due to the coupling between the filter inductor current and resonant inductor current. An analysis that takes into account the presence of the resonant elements is presented to establish the condition for stability. This method correctly predicts the stability of the current-controlled active-clamp converters. A simple expression for the maximum duty cycle for subharmonic-free operation is obtained. The results are verified experimentally.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

A novel methodology for modeling the effects of process variations on circuit delay performance is proposed by relating the variations in process parameters to variations in delay metric of a complex digital circuit. The delay of a 2-input NAND gate with 65nm gate length transistors is extensively characterized by mixed-mode simulations which is then used as a library element. The variation in saturation current Ionat the device level, and the variation in rising/falling edge stage delay for the NAND gate at the circuit level, are taken as performance metrics. A 4-bit x 4-bit Wallace tree multiplier circuit is used as a representative combinational circuit to demonstrate the proposed methodology. The variation in the multiplier delay is characterized, to obtain delay distributions, by an extensive Monte Carlo analysis. An analytical model based on CV/I metric is proposed, to extend this methodology for a generic technology library with a variety of library elements.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

A method of precise measurement of on-chip analog voltages in a mostly-digital manner, with minimal overhead, is presented. A pair of clock signals is routed to the node of an analog voltage. This analog voltage controls the delay between this pair of clock signals, which is then measured in an all-digital manner using the technique of sub-sampling. This sub-sampling technique, having measurement time and accuracy trade-off, is well suited for low bandwidth signals. This concept is validated by designing delay cells, using current starved inverters in UMC 130nm CMOS process. Sub-mV accuracy is demonstrated for a measurement time of few seconds.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

We propose a Low Noise Amplifier (LNA) architecture for power scalable receiver front end (FE) for Zigbee. The motivation for power scalable receiver is to enable minimum power operation while meeting the run-time performance needed. We use simple models to find empirical relations between the available signal and interference levels to come up with required Noise Figure (NF) and 3rd order Intermodulation Product (IIP3) numbers. The architecture has two independent digital knobs to control the NF and IIP3. Acceptable input match while using adaptation has been achieved by using an Active Inductor configuration for the source degeneration inductor of the LNA. The low IF receiver front end (LNA with I and Q mixers) was fabricated in 130nm RFCMOS process and tested.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Chronic recording of neural signals is indispensable in designing efficient brain–machine interfaces and to elucidate human neurophysiology. The advent of multichannel micro-electrode arrays has driven the need for electronics to record neural signals from many neurons. The dynamic range of the system can vary over time due to change in electrode–neuron distance and background noise. We propose a neural amplifier in UMC 130 nm, 1P8M complementary metal–oxide–semiconductor (CMOS) technology. It can be biased adaptively from 200 nA to 2 $mu{rm A}$, modulating input referred noise from 9.92 $mu{rm V}$ to 3.9 $mu{rm V}$. We also describe a low noise design technique which minimizes the noise contribution of the load circuitry. Optimum sizing of the input transistors minimizes the accentuation of the input referred noise of the amplifier and obviates the need of large input capacitance. The amplifier achieves a noise efficiency factor of 2.58. The amplifier can pass signal from 5 Hz to 7 kHz and the bandwidth of the amplifier can be tuned for rejecting low field potentials (LFP) and power line interference. The amplifier achieves a mid-band voltage gain of 37 dB. In vitro experiments are performed to validate the applicability of the neural low noise amplifier in neural recording systems.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

An extension to a formal verification approach of hybrid systems is proposed to verify analog and mixed signal (AMS) designs. AMS designs can be formally modeled as hybrid systems and therefore lend themselves to the formal analysis and verification techniques applied to hybrid systems. The proposed approach employs simulation traces obtained from an actual design implementation of AMS circuit blocks (for example, in the form of SPICE netlists) to carry out formal analysis and verification. This enables the same platform used for formally validating an abstract model of an AMS design, to be also used for validating its different refinements and design implementation; thereby, providing a simple route to formal verification at different levels of implementation. The feasibility of the proposed approach is demonstrated with a case study based on a tunnel diode oscillator. Since the device characteristic of a tunnel diode is highly non-linear with a negative resistance region, dynamic behavior of circuits in which it is employed as an element is difficult to model, analyze and verify within a general hybrid system formal verification tool. In the case study presented the formal model and the proposed computational techniques have been incorporated into CheckMate, a formal verification tool based on MATLAB and Simulink-Stateflow Framework from MathWorks.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

A new static 3-step distance relay based on the principle of multi-input phase comparison is described in the paper. Design principles and typical discriminating and logic circuits are described for the new relaying system. The relaying system uses semiconductor circuits throughout and features high speed and good performance. The comparator model, which effects multi-input phase comparison, has been devised to provide reliable pickup for closein faults, and to achieve an improved polar characteristic in the complex- impedance plane, which fits around only the fault area of a transmission line. Operating time of the relay is less than 1 cycle for unbalanced faults, and less than a halfcycle for 3-phase faults. Protective circuits have also been added to detect power swing and to block tripping for a predetermined number of power-swing cycles. The operating characteristics of the relay, as expressed by accuracy/range charts, are presented.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

The paper proposes a study of symmetrical and related components, based on the theory of linear vector spaces. Using the concept of equivalence, the transformation matrixes of Clarke, Kimbark, Concordia, Boyajian and Koga are shown to be column equivalent to Fortescue's symmetrical-component transformation matrix. With a constraint on power, criteria are presented for the choice of bases for voltage and current vector spaces. In particular, it is shown that, for power invariance, either the same orthonormal (self-reciprocal) basis must be chosen for both voltage and current vector spaces, or the basis of one must be chosen to be reciprocal to that of the other. The original �¿, ��, 0 components of Clarke are modified to achieve power invariance. For machine analysis, it is shown that invariant transformations lead to reciprocal mutual inductances between the equivalent circuits. The relative merits of the various components are discussed.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Static distance relays employing semiconductor devices as their active elements offer many advantages over the conventional electromagnetic and rectifier relays. The paper describes single-system and three-system static distance relays, which depend for their operation on the instantaneous-comparison or `block-spike¿ scheme. Design principles and typical discriminating and logic circuits are described for the new relaying equipment. The relaying circuitry has been devised for obtaining uniform performance on all kinds of faults, by the use of two phase detectors¿one for multiphase faults and one for earth faults. The phase detector for multiphase faults provides an improved polar characteristic in the complex-impedance plane, which fits only around the fault area of a transmission line. The other features of the relay are: reliable pickup for close-in faults, least susceptibility to maloperation under power-swing conditions, and reduction in cost and panel space required. The operating characteristics of the relays, as expressed by accuracy/range charts, are also presented.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Bypass operation with the aid of a special bypass valve is an important part of present-day schemes of protection for h.v. d.c. transmission systems. In this paper, the possibility of using two valves connected to any phase in the bridge convertor for the purpose of bypass operation is studied. The scheme is based on the use of logic circuits in conjunction with modified methods of fault detection. Analysis of the faults in a d.c. transmission system is carried out with the object of determining the requirements of such a logic-circuit control system. An outline of the scheme for the logic-circuit control of the bypass operation for both rectifier and invertor bridges is then given. Finally, conclusions are drawn regarding the advantages of such a system, which include reduction in the number of valves, prevention of severe faults and fast clearance of faults, in addition to the immediate location of the fault and its nature.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Simpler circuits for frequency-sensitive relays responding to change and rate of change of system frequency have been developed employing phase-locked loops. A new relay responding to time intergral of the fall in system frequency has also been developed and its performance has been compared with those responding to change and rate of change of system frequency. The relays have been tested and calibrated with the help of a specially designed calibration kit.