135 resultados para Resolution Trust Corporation (U.S.)
Resumo:
The resolution of the digital signal path has a crucial impact on the design, performance and the power dissipation of the radio receiver data path, downstream from the ADC. The ADC quantization noise has been traditionally included with the Front End receiver noise in calculating the SNR as well as BER for the receiver. Using the IEEE 802.15.4 as an example, we show that this approach leads to an over-design for the ADC and the digital signal path, resulting in larger power. More accurate specifications for the front-end design can be obtained by making SNRreg a function of signal resolutions. We show that lower resolution signals provide adequate performance and quantization noise alone does not produce any bit-error. We find that a tight bandpass filter preceding the ADC can relax the resolution requirement and a 1-bit ADC degrades SNR by only 1.35 dB compared to 8-bit ADC. Signal resolution has a larger impact on the synchronization and a 1-bit ADC costs about 5 dB in SNR to maintain the same level of performance as a 8-bit ADC.
Resumo:
To realistically simulate the motion of flexible objects such as ropes, strings, snakes, or human hair,one strategy is to discretise the object into a large number of small rigid links connected by rotary or spherical joints. The discretised system is highly redundant and the rotations at the joints (or the motion of the other links) for a desired Cartesian motion of the end of a link cannot be solved uniquely. In this paper, we propose a novel strategy to resolve the redundancy in such hyper-redundant systems.We make use of the classical tractrix curve and its attractive features. For a desired Cartesian motion of the `head'of a link, the `tail' of the link is moved according to a tractrix,and recursively all links of the discretised objects are moved along different tractrix curves. We show that the use of a tractrix curve leads to a more `natural' motion of the entire object since the motion is distributed uniformly along the entire object with the displacements tending to diminish from the `head' to the `tail'. We also show that the computation of the motion of the links can be done in real time since it involves evaluation of simple algebraic, trigonometric and hyperbolic functions. The strategy is illustrated by simulations of a snake, tying of knots with a rope and a solution of the inverse kinematics of a planar hyper-redundant manipulator.
Resumo:
An all-digital on-chip clock skew measurement system via subsampling is presented. The clock nodes are sub-sampled with a near-frequency asynchronous sampling clock to result in beat signals which are themselves skewed in the same proportion but on a larger time scale. The beat signals are then suitably masked to extract only the skews of the rising edges of the clock signals. We propose a histogram of the arithmetic difference of the beat signals which decouples the relationship of clock jitter to the minimum measurable skew, and allows skews arbitrarily close to zero to be measured with a precision limited largely by measurement time, unlike the conventional XOR based histogram approach. We also analytically show that the proposed approach leads to an unbiased estimate of skew. The measured results from a 65 nm delay measurement front-end indicate that for an input skew range of +/- 1 fan-out-of-4 (FO4) delay, +/- 3 sigma resolution of 0.84 ps can be obtained with an integral error of 0.65 ps. We also experimentally demonstrate that a frequency modulation on a sampling clock maintains precision, indicating the robustness of the technique to jitter. We also show how FM modulation helps in restoring precision in case of rationally related clocks.
Resumo:
Specific heat, resistivity, magnetic susceptibility, linear thermal expansion (LTE), and high-resolution synchrotron x-ray powder diffraction investigations of single crystals Fe(1+y) Te (0.06 <= y <= 0.15) reveal a splitting of a single, first-order transition for y <= 0.11 into two transitions for y >= 0.13. Most strikingly, all measurements on identical samples Fe(1.13)Te consistently indicate that, upon cooling, the magnetic transition at T(N) precedes the first-order structural transition at a lower temperature T(s). The structural transition in turn coincides with a change in the character of the magnetic structure. The LTE measurements along the crystallographic c axis display a small distortion close to T(N) due to a lattice striction as a consequence of magnetic ordering, and a much larger change at T(s). The lattice symmetry changes, however, only below T(s) as indicated by powder x-ray diffraction. This behavior is in stark contrast to the sequence in which the phase transitions occur in Fe pnictides.
Resumo:
Three-dimensional (3D) resolution improvement in multi-photon multiple-excitation-spot-optical microscopy is proposed. Specially designed spatial filter is employed for improving the overall 3D resolution of the imaging system. An improvement up to a factor of 14.5 and sub-femto liter volume excitation is achieved. The system shows substantial sidelobe reduction (<4%) due to the non-linear intensity dependence of multiphoton process. Polarization effect on x-oriented and freely rotating dipoles shows dramatic change in the field distribution at the focal-plane. The resulting point-spread function has the ability to produce several strongly localized polarization dependent field patterns which may find applications in optical engineering and bioimaging.
Resumo:
In the determination of the response time of u.h.v. damped capacitive impulse voltage dividers using the CIGRE IMR-1MS group (1) method and the arrangement suggested by the International Electrotechnical Commission (the I EC square loop),the surge impedance of the connecting lead has been found to influence the accuracy of determination. To avoid this difficulty,a new graphical procedure is proposed. As this method uses only those data points which can be determined with good accuracy, errors in response-time area evaluation do not influence the result.
Resumo:
The widely used Bayesian classifier is based on the assumption of equal prior probabilities for all the classes. However, inclusion of equal prior probabilities may not guarantee high classification accuracy for the individual classes. Here, we propose a novel technique-Hybrid Bayesian Classifier (HBC)-where the class prior probabilities are determined by unmixing a supplemental low spatial-high spectral resolution multispectral (MS) data that are assigned to every pixel in a high spatial-low spectral resolution MS data in Bayesian classification. This is demonstrated with two separate experiments-first, class abundances are estimated per pixel by unmixing Moderate Resolution Imaging Spectroradiometer data to be used as prior probabilities, while posterior probabilities are determined from the training data obtained from ground. These have been used for classifying the Indian Remote Sensing Satellite LISS-III MS data through Bayesian classifier. In the second experiment, abundances obtained by unmixing Landsat Enhanced Thematic Mapper Plus are used as priors, and posterior probabilities are determined from the ground data to classify IKONOS MS images through Bayesian classifier. The results indicated that HBC systematically exploited the information from two image sources, improving the overall accuracy of LISS-III MS classification by 6% and IKONOS MS classification by 9%. Inclusion of prior probabilities increased the average producer's and user's accuracies by 5.5% and 6.5% in case of LISS-III MS with six classes and 12.5% and 5.4% in IKONOS MS for five classes considered.
Resumo:
Chromium nanowires of diameter 40-120 nm have been grown inside lithographically fabricated U-trench templates on oxidized silicon substrate by RF sputtering deposition technique. Under favourable experimental conditions, very long nanowires can be grown which depends on the trench length and surface homogeneity along the axis. Surface wettability control by the restricted supply of metal vapour is the key for the formation of nanowires. Diameter/depth ratio for the trench template is demonstrated to be crucial for the growth of nanowires.
Resumo:
A variable resolution global spectral method is created on the sphere using High resolution Tropical Belt Transformation (HTBT). HTBT belongs to a class of map called reparametrisation maps. HTBT parametrisation of the sphere generates a clustering of points in the entire tropical belt; the density of the grid point distribution decreases smoothly in the domain outside the tropics. This variable resolution method creates finer resolution in the tropics and coarser resolution at the poles. The use of FFT procedure and Gaussian quadrature for the spectral computations retains the numerical efficiency available with the standard global spectral method. Accuracy of the method for meteorological computations are demonstrated by solving Helmholtz equation and non-divergent barotropic vorticity equation on the sphere. (C) 2011 Elsevier Inc. All rights reserved.
Resumo:
We propose fundamental improvements in three-dimensional (3D) resolution of multiple excitation spot optical microscopy. The excitation point spread function (PSF) is generated by two interfering counter-propagating depth-of-focus beams along the optical axis. Detection PSF is obtained by coherently interfering the emitted fluorescent light (collected by both the objectives) at the detector. System PSF shows upto 14-fold reduction in focal volume as compared to confocal, and almost 2-fold improvement in lateral resolution. Proposed PSF has the ability to simultaneously excite multiple 3D-spots of sub-femtoliter volume. Potential applications are in fluorescence microscopy and nanobioimaging. Copyright 2011 Author(s). This article is distributed under a Creative Commons Attribution 3.0 Unported License. [doi:10.1063/1.3598413]
Resumo:
A high resolution quantitative granulometric record for site Uchediya 21A degrees 43'2.22aEuro(3) N, 73A degrees 6'26.22aEuro(3) E; 10 m a. s. l.] gives understanding towards accretion history of the late Holocene flood plain in the lower reaches of Narmada River. Two sediment facies (sandy and muddy) and seven subfacies (sandy subfacies: St(MS+FS+CS), SmFS+MS, Sl(FS+VFS), and St(MS + CS); muddy subfacies: FmSILT+VFS+FS, FmSILT+VFS (O) and FmSILT+VFS (T)) are identified based on cluster analysis supplemented with sedimentary structures observed in field and other laboratory data. Changes in hydrodynamics are further deduced based on various sedimentological parameters and their ratios leading to arrive at a depositional model.
Resumo:
NMR spectroscopic separation of double bonded cis- and trans-isomers, that have different molecular shapes but identical mass have been carried out using Diffusion Ordered Spectroscopy (DOSY). The mixtures of fumaric acid and maleic acid, that have similar hydrodynamic radii, have resolved been on the basis of their diffusion coefficients arising due to their different tendencies to associate with micelles or reverse micelles. Sodium dodecyl sulfate (SDS) and Dioctyl sulfosuccinate sodium salt (AOT) have been used as the media to mimic the chromatographic conditions, modify the average mobility and to achieve differential diffusion rates. The best separation of the components has been achieved by Dioctyl sulfosuccinate sodium salt (AOT) in D2O solution. (C) 2012 Elsevier B.V. All rights reserved.
Resumo:
New C-13-detected NMR experiments have been devised for molecules in solution and solid state, which provide chemical shift correlations of methyl groups with high resolution, selectivity and sensitivity. The experiments achieve selective methyl detection by exploiting the one bond J-coupling between the C-13-methyl nucleus and its directly attached C-13 spin in a molecule. In proteins such correlations edit the C-13-resonances of different methyl containing residues into distinct spectral regions yielding a high resolution spectrum. This has a range of applications as exemplified for different systems such as large proteins, intrinsically disordered polypeptides and proteins with a paramagnetic centre.