88 resultados para Antioxidant agents


Relevância:

20.00% 20.00%

Publicador:

Resumo:

In this report, we present cationic dimeric (gemini) lipids for significant plasmid DNA (pDNA) delivery to different cell lines without any marked toxicity in the presence of serum. Six gemini lipids based on alpha-tocopherol were synthesized, which differed in their spacer chain lengths. Each of these gemini lipids mixed with a helper lipid, 1,2-dioleoyl phosphatidyl ethanolamine (DOPE), was capable of forming stable aqueous suspensions. These co-liposomal systems were examined for their potential to transfect pEGFP-C3 plasmid DNA into nine cell lines of different origins. The transfection efficacies noticed in terms of EGFP expression levels using flow cytometry were well corroborated using independent fluorescence microscopy studies. Significant EGFP expression levels were reported using the gemini co-liposomes, which counted significantly better than one well known commercial formulation, Lipofectamine 2000 (L2 K). Transfection efficacies were also analyzed in terms of the degree of intracellular delivery of labeled plasmid DNA (pDNA) using confocal microscopy, which revealed an efficient internalization in the presence of serum. The cell viability assays performed using optimized formulations demonstrated no significant toxicity towards any of the cell lines used in the study. We also had a look at the lipoplex internalization pathway to profile the uptake characteristics. A caveolae/lipid raft route was attributed to their excellent gene transfection capabilities. The study was further advanced by using a therapeutic p53-EGFP-C3 plasmid and the apoptotic activity was observed using FACS and growth inhibition assay.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Structural studies on the polymorphs of the organoselenium antioxidant ebselen and its derivative show the potential of organic selenium to form unusually short Se center dot center dot center dot O chalcogen bonds that lead to conserved supramolecular recognition units. Se center dot center dot center dot O interactions observed in these polymorphs are the shortest such chalcogen bonds known for organoselenium compounds. The FTIR spectral evolution characteristics of this interaction from solution state to solid crystalline state further validates the robustness of this class of supramolecular recognition units. The strength and electronic nature of the Se center dot center dot center dot O chalcogen bonds were explored using high-resolution X-ray charge density analysis and atons-in-molecules (AIM) theoretical analysis. A charge density study unravels the strong electrostatic nature of Se center dot center dot center dot O chalcogen bonding and soft-metal-like behavior of organoselenium. An analysis of the charge density around Se-N and Se-C covalent bonds in conjunction with the Se center dot center dot center dot O chalcogen bonding modes in ebselen and its analogues provides insights into the mechanism of drug action in this class of organoselenium antioxidants. The potential role of the intermolecular Se center dot center dot center dot O chalcogen bonding in forming the intermediate supramolecular assembly that leads to the bond cleavage mechanism has been proposed in terms of electron density topological parameters in a series of molecular complexes of ebselen with reactive oxygen species (ROS).

Relevância:

20.00% 20.00%

Publicador:

Resumo:

New N'-2-oxo-1,2-dihydro-3H-indol-3-ylidene]benzohydrazide derivatives were synthesized and evaluated for their cytotoxic properties against murine leukemia, L1210, human leukemia, REH and K562, human T-cell leukemia, CEM and human cervix carcinoma, HeLa cells. Among the tested compounds, the 3,4,5-trimethoxy-N'-5-methyl-2-oxo-1,2-dihydro-3H-indol-3-ylidene]ben zohydrazide derivative (5t) emerged as the most potent inhibitor against all the tumor cell lines evaluated. To investigate the mechanism of action, 5t was further studied by cell cycle analysis, mitochondrial membrane potential analysis, DNA fragmentation and Annexin V-FITC flow cytometric analysis, which suggested that 5t was able to induce apoptosis at submicromolar range.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The study reports chiral sensing properties of RNA nucleosides. Adenosine, guanosine, uridine and cytidine are used as chiral derivatizing agents to differentiate chiral 1 degrees-amines. A three component protocol has been adopted for complexation of nucleosides and amines. The chiral differentiating ability of nucleosides is examined for different amines based on the H-1 NMR chemical shift differences of diastereomers (Delta delta(R,S)). Enantiomeric differentiation has been observed at multiple chemically distinct proton sites. Adenosine and guanosine exhibit large chiral differentiation (Delta delta(R,S)) due to the presence of a purine ring. The diastereomeric excess (de) measured by using adenosine is in good agreement with the gravimetric values.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

A series of 2,5-di(4-aryloylaryloxymethyl)-1,3,4-oxadiazoles 9a-j were obtained via multistep synthesis from hydroxybenzophenones 4a-e. The cytotoxicity of compounds 9a-j was evaluated against human leukemia cell lilies (K562 and CEM). The compounds exhibited moderate to good anti-cancer activity with compounds 9b and 9i having a chloro group exhibiting the best activity (IC50 = 10 mu M). Compound 9i exhibited activity against both the cell lines and 9b only exhibited activity against CEM. Further, a lactate dehydrogenase (LDH) assay and DNA fragmentation studies of the compounds 9a-j were also performed. (C) 2013 Elsevier Masson SAS. All rights reserved.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Novel isoselenazoles with high glutathione peroxidase (GPx) and peroxiredoxin (Prx) activities provide remarkable cytoprotection to human cells, mainly by exhibiting antioxidant activities in the presence of cellular thiols. The cytotoxicity of the isoselenazoles is found to be significantly lower than that of ebselen, which is being clinically evaluated by several groups for the treatment of reperfusion injuries and stroke, hearing loss, and bipolar disorder. The compounds reported in this paper have the potential to be used as therapeutic agents for disorders mediated by reactive oxygen species.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

CONSPECTUS: Curcumin is a polyphenolic species. As an active ingredient of turmeric, it is well-known for its traditional medicinal properties. The therapeutic values include antioxidant, anti-inflammatory, antiseptic, and anticancer activity with the last being primarily due to inhibition of the transcription factor NF-kappa B besides affecting several biological pathways to arrest tumor growth and its progression. Curcumin with all these positive qualities has only remained a potential candidate for cancer treatment over the years without seeing any proper usage because of its hydrolytic instability involving the diketo moiety in a cellular medium and its poor bioavailability. The situation has changed considerably in recent years with the observation that curcumin in monoanionic form could be stabilized on binding to a metal ion. The reports from our group and other groups have shown that curcumin in the metal-bound form retains its therapeutic potential. This has opened up new avenues to develop curcumin-based metal complexes as anticancer agents. Zinc(II) complexes of curcumin are shown to be stable in a cellular medium. They display moderate cytotoxicity against prostate cancer and neuroblastoma cell lines. A similar stabilization and cytotoxic effect is reported for (arene)ruthenium(II) complexes of curcumin against a variety of cell lines. The half-sandwich 1,3,5-triaza-7-phosphatricyclo-3.3.1.1]decane (RAPTA)-type ruthenium(II) complexes of curcumin are shown to be promising cytotoxic agents with low micromolar concentrations for a series of cancer cell lines. In a different approach, cobalt(III) complexes of curcumin are used for its cellular delivery in hypoxic tumor cells using intracellular agents that reduce the metal and release curcumin as a cytotoxin. Utilizing the photophysical and photochemical properties of the curcumin dye, we have designed and synthesized photoactive curcumin metal complexes that are used for cellular imaging by fluorescence microscopy and damaging the cancer cells on photoactivation in visible light while being minimally toxic in darkness. In this Account, we have made an attempt to review the current status of the chemistry of metal curcumin complexes and present results from our recent studies on curcumin complexes showing remarkable in vitro photocytotoxicity. The undesirable dark toxicity of the complexes can be reduced with suitable choice of the metal and the ancillary ligands in a ternary structure. The complexes can be directed to specific subcellular organelles. Selectivity by targeting cancer cells over normal cells can be achieved with suitable ligand design. We expect that this methodology is likely to provide an impetus toward developing curcumin-based photochemotherapeutics for anticancer treatment and cure.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

A new 2,2-azinobis-(3-ethylbenzothiazoline-6-sulfonic acid) (ABTS)-radical scavenging and antiproliferative agents of pyrrolo1,2-a]quinoline derivatives have been synthesized. An efficient method for the synthesis of 14 novel diversified pyrrolo1,2-a]quinoline derivatives has been described using 4-(1,3-dioxolan-2-yl)quinoline and different phenacyl bromides in acetone and followed by reacting with different acetylenes in dimethylformamide/K2CO3. The structure of the newly synthesized compounds was determined by infrared, H-1 NMR, C-13 NMR, mass spectrometry, and elemental analysis. The in vitro antioxidant activity revealed that among all the tested compounds 5n exhibited maximum scavenging activity with ABTS. Compound 5b has showed good antiproliferative activity as an inhibitor of epidermal growth factor receptor (EGFR) tyrosine kinase.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Spirodiazaselenuranes are structurally interesting compounds and the stability of these compounds depends highly on the nature of the substituents attached to the nitrogen atoms. Aromatic substituents are known to play important roles in stabilizing the Se-N bonds in spiro compounds. In this study, several spirodiazaselenuranes are synthesized by introducing benzylic and aliphatic substituents to understand their effect on the stability of the Se-N bonds and the antioxidant activity. Replacement of phenyl substituent by benzyl/alkyl groups significantly reduces the stability of the spirodiazaselenuranes and slows down the oxidative cyclization process. The selenium centre in the spiro compounds undergoes further oxidation to produce the corresponding selenurane oxides, which are stable at room temperature. Comparison of the glutathione peroxidase (GPx) mimetic activity of the compounds showed that the diaryl selenides having heterocyclic rings are significantly more active due to the facile oxidation of the selenium centre. However, the activity is reduced significantly for compounds having aliphatic substituents. In addition to GPx activity, the compounds also inhibit peroxynitrite-mediated nitration and oxidation reaction of protein and small molecules, respectively. The experimental observations suggest that the antioxidant activity is increased considerably upon substitution of the aromatic group with the benzylic/aliphatic substituents on the nitrogen atoms.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Organophosphorus-based nerve agents, such as paraoxon, parathion, and malathion, inhibit acetylcholinesterase, which results in paralysis, respiratory failure, and death. Bacteria are known to use the enzyme phosphotriesterase (PTE) to break down these compounds. In this work, we designed vacancy-engineered nanoceria (VE CeO2 NPs) as PTE mimetic hotspots for the rapid degradation of nerve agents. We observed that the hydrolytic effect of the nano-material is due to the synergistic activity between both Ce3+ and Ce4+ ions located in the active site-like hotspots. Furthermore, the catalysis by nanoceria overcomes the product inhibition generally observed for PTE and small molecule-based PTE mimetics.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Enzyme-and pH-responsive polyelectrolyte nanocapsules having diameters in the range of 200 +/- 20 nm were fabricated by means of Layer-by-Layer assembly of biopolymers, protamine, and heparin, and then loaded with anticancer drug doxorubicin. The incorporation of the FDA-approved peptide drug protamine as a wall component rendered the capsules responsive to enzyme stimuli. The stimuli-responsive drug release from these nanocapsules was evaluated, and further modulation of capsule permeability to avoid premature release was demonstrated by crosslinking the wall components. The interaction of the nanocapsules with cancer cells was studied using MCF-7 breast cancer cells. These capsules were readily internalized and disintegrated inside the cells, culminating in the release of the loaded doxorubicin and subsequent cell death as observed by confocal microscopy and MTT Assay. The bioavailability studies performed using BALB/c mice revealed that the encapsulated doxorubicin exhibited enhanced bioavailability compared to free doxorubicin. Our results indicate that this stimuli-responsive system fabricated from clinically used FDA-approved molecules and exhibiting minimal premature release has great potential for drug-delivery applications.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Organophosphorus-based nerve agents, such as paraoxon, parathion, and malathion, inhibit acetylcholinesterase, which results in paralysis, respiratory failure, and death. Bacteria are known to use the enzyme phosphotriesterase (PTE) to break down these compounds. In this work, we designed vacancy-engineered nanoceria (VE CeO2 NPs) as PTE mimetic hotspots for the rapid degradation of nerve agents. We observed that the hydrolytic effect of the nano-material is due to the synergistic activity between both Ce3+ and Ce4+ ions located in the active site-like hotspots. Furthermore, the catalysis by nanoceria overcomes the product inhibition generally observed for PTE and small molecule-based PTE mimetics.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Enzyme-and pH-responsive polyelectrolyte nanocapsules having diameters in the range of 200 +/- 20 nm were fabricated by means of Layer-by-Layer assembly of biopolymers, protamine, and heparin, and then loaded with anticancer drug doxorubicin. The incorporation of the FDA-approved peptide drug protamine as a wall component rendered the capsules responsive to enzyme stimuli. The stimuli-responsive drug release from these nanocapsules was evaluated, and further modulation of capsule permeability to avoid premature release was demonstrated by crosslinking the wall components. The interaction of the nanocapsules with cancer cells was studied using MCF-7 breast cancer cells. These capsules were readily internalized and disintegrated inside the cells, culminating in the release of the loaded doxorubicin and subsequent cell death as observed by confocal microscopy and MTT Assay. The bioavailability studies performed using BALB/c mice revealed that the encapsulated doxorubicin exhibited enhanced bioavailability compared to free doxorubicin. Our results indicate that this stimuli-responsive system fabricated from clinically used FDA-approved molecules and exhibiting minimal premature release has great potential for drug-delivery applications.