109 resultados para Air Dispersion Modeling
An asymptotic analysis for the coupled dispersion characteristics of a structural acoustic waveguide
Resumo:
Analytical expressions are derived, using asymptotics, for the fluid-structure coupled wavenumbers in a one-dimensional (1-D) structural acoustic waveguide. The coupled dispersion equation of the system is rewritten in the form of the uncoupled dispersion equation with an added term due to the fluid-structure coupling. As a result of this coupling, the prior uncoupled structural and acoustic wavenumbers, now become coupled structural and acoustic wavenumbers. A fluid-loading parameter e, defined as the ratio of mass of fluid to mass of the structure per unit area, is introduced which when set to zero yields the uncoupled dispersion equation. The coupled wavenumber is then expressed in terms of an asymptotic series in e. Analytical expressions are found as e is varied from small to large values. Different asymptotic expansions are used for different frequency ranges with continuous transitions occurring between them. This systematic derivation helps to continuously track the wavenumber solutions as the fluid-loading parameter is varied from small to large values. Though the asymptotic expansion used is limited to the first-order correction factor, the results are close to the numerical results. A general trend is that a given wavenumber branch transits from a rigid-walled solution to a pressure-release solution with increasing E. Also, it is found that at any frequency where two wavenumbers intersect in the uncoupled analysis, there is no more an-intersection in the coupled case, but a gap is created at that frequency. (c) 2007 Elsevier Ltd. All rights reserved.
Resumo:
The coupled wavenumbers of a fluid-filled flexible cylindrical shell vibrating in the axisymmetric mode are studied. The coupled dispersion equation of the system is rewritten in the form of the uncoupled dispersion equation of the structure and the acoustic fluid, with an added fluid-loading term involving a parameter e due to the coupling. Using the smallness of Poisson's ratio (v), a double-asymptotic expansion involving e and v 2 is substituted in this equation. Analytical expressions are derived for the coupled wavenumbers (for large and small values of E). Different asymptotic expansions are used for different frequency ranges with continuous transitions occurring between them. The wavenumber solutions are continuously tracked as e varies from small to large values. A general trend observed is that a given wavenumber branch transits from a rigidwalled solution to a pressure-release solution with increasing E. Also, it is found that at any frequency where two wavenumbers intersect in the uncoupled analysis, there is no more an intersection in the coupled case, but a gap is created at that frequency. Only the axisymmetric mode is considered. However, the method can be extended to the higher order modes.
Resumo:
Magnetorheological dampers are intrinsically nonlinear devices, which make the modeling and design of a suitable control algorithm an interesting and challenging task. To evaluate the potential of magnetorheological (MR) dampers in control applications and to take full advantages of its unique features, a mathematical model to accurately reproduce its dynamic behavior has to be developed and then a proper control strategy has to be taken that is implementable and can fully utilize their capabilities as a semi-active control device. The present paper focuses on both the aspects. First, the paper reports the testing of a magnetorheological damper with an universal testing machine, for a set of frequency, amplitude, and current. A modified Bouc-Wen model considering the amplitude and input current dependence of the damper parameters has been proposed. It has been shown that the damper response can be satisfactorily predicted with this model. Second, a backstepping based nonlinear current monitoring of magnetorheological dampers for semi-active control of structures under earthquakes has been developed. It provides a stable nonlinear magnetorheological damper current monitoring directly based on system feedback such that current change in magnetorheological damper is gradual. Unlike other MR damper control techniques available in literature, the main advantage of the proposed technique lies in its current input prediction directly based on system feedback and smooth update of input current. Furthermore, while developing the proposed semi-active algorithm, the dynamics of the supplied and commanded current to the damper has been considered. The efficiency of the proposed technique has been shown taking a base isolated three story building under a set of seismic excitation. Comparison with widely used clipped-optimal strategy has also been shown.
Resumo:
The time evolution of the film thickness and domain formation of octadecylamine molecules adsorbed oil a mica surface is investigated Using atomic force microscopy. The adsorbed Film thickness is determined by measuring the height profile across the mica-amine interface of a mica surface partially immersed in a 15 mM solution of octadecylamine in chloroform. Using this novel procedure, adsorption of amine on mica is found to occur in three distinct stages, with morphologically distinct domain Formation and growth occurring during each stage. In the first stage, where adsorption is primarily in the thin-film regime, all average Film thickness of 0.2 (+/- 0.3) nm is formed for exposure times below 30 s and 0.8 (+/- 0.2) nm for 60 s of immersion time. During this stage, large sample spanning domains are observed. The second stage, which occurs between 60-300 s, is associated with it regime of rapid film growth, and the film thickness increases from about 0.8 to 25 nm during this stage. Once the thick-film regime is established, further exposure to the amine solution results in all increase in the domain area, and it regime of lateral domain growth is observed. In this stage, the domain area coverage grows from 38 to 75%, and the FTIR spectra reveal an increased level of crystallinity in the film. Using it diffusion-controlled model and it two-step Langmuir isotherm, the time evolution of the film growth is quantitatively captured. The model predicts the time at which the thin to thick film transition occurs as well its the time required for complete film growth at longer times. The Ward-Tordai equation is also solved to determine the model parameters in the monolayer (thin-film) regime, which occurs during the initial stages of film growth.
Resumo:
Visual tracking has been a challenging problem in computer vision over the decades. The applications of Visual Tracking are far-reaching, ranging from surveillance and monitoring to smart rooms. Mean-shift (MS) tracker, which gained more attention recently, is known for tracking objects in a cluttered environment and its low computational complexity. The major problem encountered in histogram-based MS is its inability to track rapidly moving objects. In order to track fast moving objects, we propose a new robust mean-shift tracker that uses both spatial similarity measure and color histogram-based similarity measure. The inability of MS tracker to handle large displacements is circumvented by the spatial similarity-based tracking module, which lacks robustness to object's appearance change. The performance of the proposed tracker is better than the individual trackers for tracking fast-moving objects with better accuracy.
Resumo:
A low temperature polyol process, based on glycolaldehyde mediated partial reduction of FeCl3 center dot 6H(2)O at 120 degrees C in the presence of sodium acetate as an alkali source and 2,2'-(ethylenedioxy)-bis-(ethylamine) as an electrostatic stabilizer has been used for the gram-scale preparation of biocompatible, water-dispersible, amine functionalized magnetite nanoparticles (MNPs) with an average diameter of 6 +/- 0.75 nm. With a reasonably high magnetization (37.8 e.m.u.) and amine groups on the outer surface of the nanoparticles, we demonstrated the magnetic separation and concentration implications of these ultrasmall particles in immunoassay. MRI studies indicated that these nanoparticles had the desired relaxivity for T-2 contrast enhancement in vivo. In vitro biocompatibility, cell uptake and MR imaging studies established that these nanoparticles were safe in clinical dosages and by virtue of their ultrasmall sizes and positively charged surfaces could be easily internalized by cancer cells. All these positive attributes make these functional nanoparticles a promising platform for further in vitro and in vivo evaluations.
Resumo:
An analytical investigation of the transverse shear wave mode tuning with a resonator mass (packing mass) on a Lead Zirconium Titanate (PZT) crystal bonded together with a host plate and its equivalent electric circuit parameters are presented. The energy transfer into the structure for this type of wave modes are much higher in this new design. The novelty of the approach here is the tuning of a single wave mode in the thickness direction using a resonator mass. First, a one-dimensional constitutive model assuming the strain induced only in the thickness direction is considered. As the input voltage is applied to the PZT crystal in the thickness direction, the transverse normal stress distribution induced into the plate is assumed to have parabolic distribution, which is presumed as a function of the geometries of the PZT crystal, packing mass, substrate and the wave penetration depth of the generated wave. For the PZT crystal, the harmonic wave guide solution is assumed for the mechanical displacement and electric fields, while for the packing mass, the former is solved using the boundary conditions. The electromechanical characteristics in terms of the stress transfer, mechanical impedance, electrical displacement, velocity and electric field are analyzed. The analytical solutions for the aforementioned entities are presented on the basis of varying the thickness of the PZT crystal and the packing mass. The results show that for a 25% increase in the thickness of the PZT crystal, there is ~38% decrease in the first resonant frequency, while for the same change in the thickness of the packing mass, the decrease in the resonant frequency is observed as ~35%. Most importantly the tuning of the generated wave can be accomplished with the packing mass at lower frequencies easily. To the end, an equivalent electric circuit, for tuning the transverse shear wave mode is analyzed.
Resumo:
The constitutive model for a magnetostrictive material and its effect on the structural response is presented in this article. The example of magnetostrictive material considered is the TERFENOL-D. As like the piezoelectric material, this material has two constitutive laws, one of which is the sensing law and the other is the actuation law, both of which are highly coupled and non-linear. For the purpose of analysis, the constitutive laws can be characterized as coupled or uncoupled and linear or non linear. Coupled model is studied without assuming any explicit direct relationship with magnetic field. In the linear coupled model, which is assumed to preserve the magnetic flux line continuity, the elastic modulus, the permeability and magneto-elastic constant are assumed as constant. In the nonlinear-coupled model, the nonlinearity is decoupled and solved separately for the magnetic domain and the mechanical domain using two nonlinear curves, namely the stress vs. strain curve and the magnetic flux density vs. magnetic field curve. This is performed by two different methods. In the first, the magnetic flux density is computed iteratively, while in the second, the artificial neural network is used, where in the trained network will give the necessary strain and magnetic flux density for a given magnetic field and stress level. The effect of nonlinearity is demonstrated on a simple magnetostrictive rod.
Resumo:
There are conflicting reports in the literature regarding solid solubility in the system RuO2-TiO2. To resolve this issue a few experiments were conducted in air at 1673, 1723, and 1773 K. The results show limited terminal solid solubility. There is an extended solid-state miscibility gap that intersects the decomposition curve for the RuO2-rich solid solution generating a peritectoid reaction at 1698 K. The measured equilibrium compositions of the solid solutions are used to develop a thermodynamic description of the oxide solid solution with rutile structure. Using the subregular solution model, the enthalpy of mixing can be represented by the expression, Delta H-M/J center dot mol(-1) = XTiO2XRuO2 ( 34,100X(TiO2) + 30,750X(RuO2)). The binodal and spinodal curves and T-X phase diagram in air are computed using this datum and Gibbs energy of formation of RuO2 available in the literature. The computed results suggest that equilibrium was not attained during solubility measurements at lower temperatures reported in the literature.
Resumo:
In this paper the static noise margin for SET (single electron transistor) logic is defined and compact models for the noise margin are developed by making use of the MIB (Mahapatra-Ionescu-Banerjee) model. The variation of the noise margin with temperature and background charge is also studied. A chain of SET inverters is simulated to validate the definition of various logic levels (like VIH, VOH, etc.) and noise margin. Finally the noise immunity of SET logic is compared with current CMOS logic.
Resumo:
In this article, a new flame extinction model based on the k/epsilon turbulence time scale concept is proposed to predict the flame liftoff heights over a wide range of coflow temperature and O-2 mass fraction of the coflow. The flame is assumed to be quenched, when the fluid time scale is less than the chemical time scale ( Da < 1). The chemical time scale is derived as a function of temperature, oxidizer mass fraction, fuel dilution, velocity of the jet and fuel type. The present extinction model has been tested for a variety of conditions: ( a) ambient coflow conditions ( 1 atm and 300 K) for propane, methane and hydrogen jet flames, ( b) highly preheated coflow, and ( c) high temperature and low oxidizer concentration coflow. Predicted flame liftoff heights of jet diffusion and partially premixed flames are in excellent agreement with the experimental data for all the simulated conditions and fuels. It is observed that flame stabilization occurs at a point near the stoichiometric mixture fraction surface, where the local flow velocity is equal to the local flame propagation speed. The present method is used to determine the chemical time scale for the conditions existing in the mild/ flameless combustion burners investigated by the authors earlier. This model has successfully predicted the initial premixing of the fuel with combustion products before the combustion reaction initiates. It has been inferred from these numerical simulations that fuel injection is followed by intense premixing with hot combustion products in the primary zone and combustion reaction follows further downstream. Reaction rate contours suggest that reaction takes place over a large volume and the magnitude of the combustion reaction is lower compared to the conventional combustion mode. The appearance of attached flames in the mild combustion burners at low thermal inputs is also predicted, which is due to lower average jet velocity and larger residence times in the near injection zone.
Resumo:
Terahertz time-domain spectroscopy has been carried out on a metallic film of polypyrrole (PPy doped by PF6). The sample was exposed to air to investigate how the conductivity of the film varies as a function of time. The absorption and dispersion of the film decrease during initial days, and then tend to saturate. The conductivity of unaged sample follows the Drude model, and upon aging the data fit to the localization-modified Drude model. The fitting parameters show that the number of charge carriers decreases during the aging process. The initial rapid decrease in conductivity suggests that some of the delocalized carriers are localized due to aging. (C) 2007 American Institute of Physics.
Resumo:
A generalized technique is proposed for modeling the effects of process variations on dynamic power by directly relating the variations in process parameters to variations in dynamic power of a digital circuit. The dynamic power of a 2-input NAND gate is characterized by mixed-mode simulations, to be used as a library element for 65mn gate length technology. The proposed methodology is demonstrated with a multiplier circuit built using the NAND gate library, by characterizing its dynamic power through Monte Carlo analysis. The statistical technique of Response. Surface Methodology (RSM) using Design of Experiments (DOE) and Least Squares Method (LSM), are employed to generate a "hybrid model" for gate power to account for simultaneous variations in multiple process parameters. We demonstrate that our hybrid model based statistical design approach results in considerable savings in the power budget of low power CMOS designs with an error of less than 1%, with significant reductions in uncertainty by atleast 6X on a normalized basis, against worst case design.
Resumo:
Properties of nanoparticles are size dependent, and a model to predict particle size is of importance. Gold nanoparticles are commonly synthesized by reducing tetrachloroauric acid with trisodium citrate, a method pioneered by Turkevich et al (Discuss. Faraday Soc. 1951, 11, 55). Data from several investigators that used this method show that when the ratio of initial concentrations of citrate to gold is varied from 0.4 to similar to 2, the final mean size of the particles formed varies by a factor of 7, while subsequent increases in the ratio hardly have any effect on the size. In this paper, a model is developed to explain this widely varying dependence. The steps that lead to the formation of particles are as follows: reduction of Au3+ in solution, disproportionation of Au+ to gold atoms and their nucleation, growth by disproportionation on particle surface, and coagulation. Oxidation of citrate results in the formation of dicarboxy acetone, which aids nucleation but also decomposes into side products. A detailed kinetic model is developed on the basis of these steps and is combined with population balance to predict particle-size distribution. The model shows that, unlike the usual balance between nucleation and growth that determines the particle size, it is the balance between rate of nucleation and degradation of dicarboxy acetone that determines the particle size in the citrate process. It is this feature that is able to explain the unusual dependence of the mean particle size on the ratio of citrate to gold salt concentration. It is also found that coagulation plays an important role in determining the particle size at high concentrations of citrate.
Resumo:
This chapter presents the real time validation of fixed order robust 112 controller designed for the lateral stabilisation of a micro air vehicle named Sarika2. Digital signal processor (DSP) based onboard computer named flight instrumentation controller (FIC) is designed to operate under automatic or manual mode. FIC gathers data from multitude of sensors and is capable of closed loop control to enable autonomous flight. Fixed order lateral H-2 controller designed with the features such as incorporation of level I flying qualities, gust alleviation and noise rejection is coded on to the FIC. Challenging real time hardware in loop simulation (HILS) is done with dSPACE1104 RTI/RTW. Responses obtained from the HILS are compared with those obtained from the offline simulation. Finally, flight trials are conducted to demonstrate the satisfactory performance of the closed loop system. The generic design methodology developed is applicable to all classes of Mini and Micro air vehicles.