87 resultados para ultrafast technology
Resumo:
When a light beam passes through any medium, the effects of interaction of light with the material depend on the field intensity. At low light intensities the response of materials remain linear to the amplitude of the applied electromagnetic field. But for sufficiently high intensities, the optical properties of materials are no longer linear to the amplitude of applied electromagnetic field. In such cases, the interaction of light waves with matter can result in the generation of new frequencies due to nonlinear processes such as higher harmonic generation and mixing of incident fields. One such nonlinear process, namely, the third order nonlinear spectroscopy has become a popular tool to study molecular structure. Thus, the spectroscopy based on the third order optical nonlinearity called stimulated Raman spectroscopy (SRS) is a tool to extract the structural and dynamical information about a molecular system. Ultrafast Raman loss spectroscopy (URLS) is analogous to SRS but is more sensitive than SRS. In this paper, we present the theoretical basis of SRS (URLS) techniques which have been developed in our laboratory.
Resumo:
We investigate the relaxation dynamics of photogenerated carriers in silicon nanowires consisting of a crystalline core and a surrounding amorphous shell, using femtosecond time-resolved differential reflectivity and transmission spectroscopy at 3.15 eV and 1.57 eV photon energies. The complex behaviour of the differential transmission and reflectivity transients is the mixed contributions from the crystalline core and the amorphous silicon on the nanowire surface and the substrate where competing effects of state-filling and photoinduced absorption govern the carrier dynamics. Faster relaxation rates are observed on increasing the photogenerated carrier density. Independent experimental results on crystalline silicon-on-sapphire (SOS) help us in separating the contributions from the carrier dynamics in crystalline core and the amorphous regions in the nanowire samples. Further, single-beam z-scan nonlinear transmission experiments at 1.57 eV in both open- and close-aperture configurations yield two-photon absorption coefficient beta (similar to 3 cm/GW) and nonlinear refraction coefficient gamma (-2.5 x 10 (-aEuro parts per thousand 4) cm(2)/GW).
Resumo:
This paper reports the fabrication and characterization of an ultrafast laser written Er-doped chalcogenide glass buried waveguide amplifier; Er-doped GeGaS glass has been synthesized by the vacuum sealed melt quenching technique. Waveguides have been fabricated inside the 4 mm long sample by direct ultrafast laser writing. The total passive fiber-to-fiber insertion loss is 2.58 +/- 0.02 dB at 1600 nm, including a propagation loss of 1.6 +/- 0.3 dB. Active characterization shows a relative gain of 2.524 +/- 0.002 dB/cm and 1.359 +/- 0.005 dB/cm at 1541 nm and 1550 nm respectively, for a pump power of 500 mW at a wavelength of 980 nm. (C) 2012 Optical Society of America
Resumo:
The basic framework and - conceptual understanding of the metallurgy of Ti alloys is strong and this has enabled the use of titanium and its alloys in safety-critical structures such as those in aircraft and aircraft engines. Nevertheless, a focus on cost-effectiveness and the compression of product development time by effectively integrating design with manufacturing in these applications, as well as those emerging in bioengineering, has driven research in recent decades towards a greater predictive capability through the use of computational materials engineering tools. Therefore this paper focuses on the complexity and variety of fundamental phenomena in this material system with a focus on phase transformations and mechanical behaviour in order to delineate the challenges that lie ahead in achieving these goals. (C) 2012 Acta Materialia Inc. Published by Elsevier Ltd. All rights reserved.
Resumo:
With the rapid scaling down of the semiconductor process technology, the process variation aware circuit design has become essential today. Several statistical models have been proposed to deal with the process variation. We propose an accurate BSIM model for handling variability in 45nm CMOS technology. The MOSFET is designed to meet the specification of low standby power technology of International Technology Roadmap for Semiconductors (ITRS).The process parameters variation of annealing temperature, oxide thickness, halo dose and title angle of halo implant are considered for the model development. One parameter variation at a time is considered for developing the model. The model validation is done by performance matching with device simulation results and reported error is less than 10%.© (2012) COPYRIGHT Society of Photo-Optical Instrumentation Engineers (SPIE). Downloading of the abstract is permitted for personal use only.
Resumo:
Chronic recording of neural signals is indispensable in designing efficient brain machine interfaces and in elucidating human neurophysiology. The advent of multichannel microelectrode arrays has driven the need for electronics to record neural signals from many neurons. The dynamic range of the system is limited by background system noise which varies over time. We propose a neural amplifier in UMC 130 nm, 2P8M CMOS technology. It can be biased adaptively from 200 nA to 2 uA, modulating input referred noise from 9.92 uV to 3.9 uV. We also describe a low noise design technique which minimizes the noise contribution of the load circuitry. The amplifier can pass signal from 5 Hz to 7 kHz while rejecting input DC offsets at electrode-electrolyte interface. The bandwidth of the amplifier can be tuned by the pseudo-resistor for selectively recording low field potentials (LFP) or extra cellular action potentials (EAP). The amplifier achieves a mid-band voltage gain of 37 dB and minimizes the attenuation of the signal from neuron to the gate of the input transistor. It is used in fully differential configuration to reject noise of bias circuitry and to achieve high PSRR.
Resumo:
It is well accepted that technology plays a critical role in socio-technical transitions, and sustainable development pathways. A society‘s amenability to the intervening (sustainable) technology is fundamental to permit these transitions. The current age is at a juncture wherein technological advancements and capacities provide the common individual with affordable and unlimited choice. Technological advancement and complexity can either remain simple and unseen to the user or may daunt him to keep away, in which case the intended pathways remain unexploited. The current paper explores the reasons behind rejection of technology and proposes a solution model to address these factors in accommodating socio-technical transitions. The paper begins with structuring the societal levels at which technological rejection occurs and proceeds to discuss technology rejection at the individual user (niche)level. The factors influencing decisions regarding technology rejection are identified and discussed with particular relevance to the progressive world (Asia).
Resumo:
We show that the third order optical nonlinearity of 15-atom gold clusters is significantly enhanced when in contact with indium tin oxide (ITO) conducting film. Open and close aperture z-scan experiments together with non-degenerate pump-probe differential transmission experiments were done using 80 fs laser pulses centered at 395 nm and 790 nm on gold clusters encased inside cyclodextrin cavities. We show that two photon absorption coefficient is enhanced by an order of magnitude as compared to that when the clusters are on pristine glass plate. The enhancement for the nonlinear optical refraction coefficient is similar to 3 times. The photo-induced excited state absorption using pump-probe experiments at pump wavelength of 395 nm and probe at 790 nm also show an enhancement by an order of magnitude. These results attributed to the excited state energy transfer in the coupled gold cluster-ITO system are different from the enhancement seen so far in charge donor-acceptor complexes and nanoparticle-conjugate polymer composites.
Resumo:
Nonequilibrium quasiparticle relaxation dynamics is reported in superconducting Ca(Fe0.944Co0.056)(2)As-2 single crystals by measuring transient reflectivity changes using femtosecond time-resolved pump-probe spectroscopy. Large changes in the temperature-dependent differential reflectivity values in the vicinity of the spin density wave (T-SDW) and superconducting (T-SC) transition temperatures of the sample have been inferred to have charge gap opening at those temperatures. We have estimated the zero-temperature charge gap value in the superconducting state to be similar to 1.8k(B)T(SC) and an electron-phonon coupling constant lambda of similar to 0.1 in the normal state that signifies the weak coupling in iron pnictides. From the peculiar temperature-dependence of the quasiparticle dynamics in the intermediate temperature region between T-SC and T-SDW we infer a temperature scale where the charge gap associated with the spin ordered phase is maximum and closes on either side while approaching the two phase transition temperatures.
Resumo:
Empirical research available on technology transfer initiatives is either North American or European. Literature over the last two decades shows various research objectives such as identifying the variables to be measured and statistical methods to be used in the context of studying university based technology transfer initiatives. AUTM survey data from years 1996 to 2008 provides insightful patterns about the North American technology transfer initiatives, we use this data in our paper. This paper has three sections namely, a comparison of North American Universities with (n=1129) and without Medical Schools (n=786), an analysis of the top 75th percentile of these samples and a DEA analysis of these samples. We use 20 variables. Researchers have attempted to classify university based technology transfer initiative variables into multi-stages, namely, disclosures, patents and license agreements. Using the same approach, however with minor variations, three stages are defined in this paper. The first stage is to do with inputs from R&D expenditure and outputs namely, invention disclosures. The second stage is to do with invention disclosures being the input and patents issued being the output. The third stage is to do with patents issued as an input and technology transfers as outcomes.
Resumo:
Optical straight waveguides are inscribed in GeGaS and GeGaSSb glasses using a high repetition-rate sub-picosecond laser. The mechanical properties of the glasses in the inscribed regions, which have undergone photo induced changes, have been evaluated by using the nanoindentation technique. Results show that the hardness and elastic modulus of the photo-modified glasses are significantly lower as compared to the other locations in the waveguide, which tend to be similar to those of the unexposed areas. The observed mechanical effects are found to correlate well with the optical properties of the waveguides. Further, based on the results, the minimum threshold values of hardness and elastic modulus for the particular propagation mode of the waveguide (single or multi), has been established.
Resumo:
Nondegenerate pump probe differential transmission experiments on gold nanorods with varying longitudinal surface plasmon resonance have revealed a new phenomenon where the polarity of the transient transmission signal can be reversibly switched between photo bleaching and photo-induced absorption by controlling probe fluence. Under the usual case where probe fluences are nominal, photo bleaching effect is observed for the nanorods with longitudinal surface plasmon resonance energy smaller than the probe photon energy. The laser-induced melting of the nanorods or change in their shape is ruled out for the observed optical switching effect. A quantitative understanding of the results is attempted by invoking a cascaded two-photon absorption dominant beyond a threshold probe fluence of similar to 75 mu J/cm(2).
Resumo:
In this work, we synthesized bulk amorphous GeGaS glass by conventional melt quenching technique. Amorphous nature of the glass is confirmed using X-ray diffraction. We fabricated the channel waveguides on this glass using the ultrafast laser inscription technique. The waveguides are written on this glass 100 mu m below the surface of the glass with a separation of 50 ae m by focusing the laser beam into the material using 0.67 NA lens. The laser parameters are set to 350 fs pulse duration at 100 KHz repetition rate. A range of writing energies with translation speeds 1 mm/s, 2 mm/s, 3 mm/s and 4 mm/s were investigated. After fabrication the waveguides facets were ground and polished to the optical quality to remove any tapering of the waveguide close to the edges. We characterized the loss measurement by butt coupling method and the mode field image of the waveguides has been captured to compare with the mode field image of fibers. Also we compared the asymmetry in the shape of the waveguide and its photo structural change using Raman spectra.
Resumo:
We report here, a finite difference thermal diffusion (FDTD) model for controlling the cross-section and the guiding nature of the buried channel waveguides fabricated on GeGaS bulk glasses using the direct laser writing technique. Optimization of the laser parameters for guiding at wavelength 1550 nm is done experimentally and compared with the theoretical values estimated by FDTD model. The mode field diameter (MFD) between 5.294 mu m and 24.706 mu m were attained by suitable selection of writing speed (1mm/s to 4 mm/s) and pulse energy (623 nJ to 806 nJ) of the laser at a fixed repletion rate of 100 kHz. Transition from single-mode to multi-mode waveguide is observed at pulse energy 806nJ as a consequence of heat accumulation. The thermal diffusion model fits well for single-mode waveguides with the exception of multi-mode waveguides.
Resumo:
Waveguides were fabricated on GeGaSEr chalcogenide glass using ultrafast laser inscription method. The thermal diffusion model is discussed for understanding the light matter interaction and shown the effect of net-fluence in waveguide formation on chalcogenide glass. (C) 2012 Optical Society of America