132 resultados para Anomalies of surface temperature
Resumo:
Silicon dioxide films are extensively used as protective, barrier and also low index films in multilayer optical devices. In this paper, the optical properties of electron beam evaporated SiO2 films, including absorption in the UV, visible and IR regions, are reported as a function of substrate temperature and post-deposition heat treatment. A comparative study of the optical properties of SiO2 films deposited in neutral and ionized oxygen is also made.
Resumo:
High-temperature superconductivity constitutes the most sensational discovery of recent times. Since these new superconductors are complex metal oxides, chemistry has had a big role to play in the investigations. For the first time, stoichiometry, structure, bonding, and such chemical factors have formed central themes in superconductivity, an area traditionally dominated by physicists. These oxide superconductors have given a big boost to solid-state chemistry.
Resumo:
This paper presents an analysis of the effects of ambients-temperature and light intensity on the V-l characteristics of bipolar transistors under electrical breakdown. The analysis is based on the transportation and storage of majority carriers in the base region. It is shown that this analysis can explain the observed shift in the V-l characteristics to lower voltages with increase in either temperature or light intensity.
Resumo:
Electron microscopic investigations have been carried out on superconducting YBa2Cu3 O7−δ, NdBa2Cu3 O7−δ and related oxides. All these orthorhombic oxides exhibit twin domains. Based on high resolution electron microscopy, it is shown that there is no significant change in the structure across the twins. Oxides of the La2−x Sr x (Ba x )CuO4 system do not show twins, but exhibit other types of defects. Twins appear to be characteristic of only the orthorhombic 123 structures.
Resumo:
High-temperature superconductivity in oxides of the type(La, Ln)2?xBax(Sr)xCuO4, Y(Ln)Ba2Cu3O7??, La3?xBa3+xCu6O14, and related systems is discussed with emphasis on aspects related to experimental solid-state chemistry. All of these oxides possess perovskite-related structures. Oxygen-excess and La-deficient La2CuO4 also exhibit superconductivity in the 20�40 K just as La2?xBax(Srx)CuO4; these oxides are orthorhombic in the superconductivity phase. The crucial role of oxygen stoichiometry in the superconductivity ofYBa2Cu3O7?? (Tc = 95 ± 5K) is examined; this oxide remains orthorhombic up to ? ? 0.6 and becomes tetragonal and nonsuperconducting beyond this value of ?. Oxygen stoichiometry in this and related oxides has to be understood in terms of structure and disorder. The structure of La3?xBa3+xCu6O14 is related to that of YBa2Cu3O7, the orthorhombic structure manifesting itself when the population of O1 oxygens (along the Cusingle bondOsingle bondCu chains) is preponderant compared to that of O5 oxygens (along thea-axis); nearly equal populations of O1 and O5 sites give rise to the tetragonal structure. A transition from a high-Tc (95 K) superconductivity regime to a low-Tc (not, vert, similar60 K) regime occurs in YBa2Cu3O7?? accompanying a change in ?. There is no evidence for Cu3+ in these nominally mixed valent copper oxides. Instead, holes are present on oxygens giving rise to O? or O2?2 species, the concentration of these species increasing with the lowering of temperature. Certain interesting aspects of the superconducting oxides such as domain or twin boundaries, Raman spectra, microwave absorption, and anomalous high-temperature resistivity drops are presented along with the important material parameters. Preparative aspects of the superconducting oxides are briefly discussed. Phase transitions seem to occur atTc as well as at not, vert, similar240 K in YBa2Cu3O7.
Resumo:
The coupling of surface acoustic waves propagating in two separated piezoelectric media is studied using the perturbation theory of Auld. The results of the analysis are applied to two configurations using Bi12GeO20 and CdS crystals. It is found that the loss due to coupling is about 7 dB at 50 MHz in the cases of (111)-cut, [110]-prop. Bi12GeO20 and Y-cut, 60°-X prop. CdS combination. On étudie le couplage des ondes acoustiques de surface se propageant sur deux milieux piezo-eléctriques par la théorie de perturbation de Auld. Les resultats d'analyse sont appliqué's aux deux configurations des cristanx Bi12GeO20 et CdS. On trouve que la perte par couplage est environ de 7 dB a 50 MHz dans le cas de combination de (111)-coupe, [110]-prop. Bi12GeO20 et Y-coupe, 60°-X prop. CdS.
Resumo:
We report the rapid solution combustion synthesis and characterization of Ag-substituted LaMnO3 phases at relatively low temperature using oxalyl dihydrazide, as fuel. Structural parameters were refined by the Rietveld method using powder X-ray diffraction data. While the parent LaMnO3 crystallizes in the orthorhombic structure, the Ag-substituted compounds crystallize in the rhombohedral symmetry. On increasing Ag-content, unit cell volume and Mn-O-Mn bond angle decreases. The Fourier transform infra red spectrum shows two absorption bands corresponding to Mn-O stretching vibration (v(s) mode) and Mn-O-Mn deformation vibration (v(b) mode) around 600 cm(-1) and 400 cm(-1) for the compositions x = 0.0, 0.05 and 0.10, respectively. Electrical resistivity measurements reveal that composition-controlled metal to insulator transition, with the maximum metal to insulator being 280 K for the composition La0.75Ag0.25MnO3. Increase in magnetic moment was observed with increase in Ag-content. The maximum magnetic moment of 35 emu/g was observed for the composition La0.80Ag0.20MnO3. (C) 2010 Elsevier Ltd. All rights reserved.
Resumo:
Studies of ZrO2 films prepared by d.c. reactive magnetron sputtering are described. The effects of substrate temperature on the packing density, refractive index, extinction coefficient and crystallinity phase have been investigated in the temperature range 25–450 °C. The refractive index varied from 1.84 to 1.95 and extinction coefficient from 2 × 10−3 to 9.6 × 10−3. This was explained on the basis of an increase in packing density from 0.686 to 0.813. The change in packing density has been attributed to a decrease in the oxygen condensation at higher temperatures. Annealing results in a decrease in refractive index and increase in extinction coefficient. The films deposited at 150 °C showed a monoclinic phase which transforms to a tetragonal phase at higher substrate temperatures.
Resumo:
In this paper, an effort is made to study accurately the field distribution for various types of ceramic insulators used for high-voltage transmission. The surface charge simulation method (SCSM) is employed for the field computation. With the help of SCSM program, a Novel field reduction electrode is designed and developed to reduce the maximum field around the pin region. In order to experimentally analyze the performance of discs with field reduction electrode, special artificial pollution test facility was built and utilized. The experimental results show better surface flashover performance of ceramic insulators used in high-voltage transmission and distribution systems.
Resumo:
In the present investigation, experiments were conducted by unidirectional sliding of pins made of FCC metals (Pb, Al, and Cu) with significantly different hardness values against the steel plates of various surface textures and roughness using an inclined pin-on-plate sliding apparatus in ambient conditions under both the dry and lubricated conditions. For a given material pair, it was observed that transfer layer formation and the coefficient of friction along with its two components, namely adhesion and plowing, are controlled by the surface texture of the harder mating surfaces and are less dependent of surface roughness (R (a)) of the harder mating surfaces. The effect of surface texture on the friction was attributed to the variation of the plowing component of friction for different surfaces. It was also observed that the variation of plowing friction as a function of hardness depends on surface textures. More specifically, the plowing friction varies with hardness of the soft materials for a given type of surface texture and it is independent of hardness of soft materials for other type of surface texture. These variations could be attributed to the extent of plane strain conditions taking place at the asperity level during sliding. It was also observed that among the surface roughness parameters, the mean slope of the profile, Delta (a), correlated best with the friction. Furthermore, dimensionless quantifiable roughness parameters were formulated to describe the degree of plowing taking place at the asperity level.
Resumo:
NiTi thin films deposited by DC magnetron sputtering of an alloy (Ni/Ti:45/55) target at different deposition rates and substrate temperatures were analyzed for their structure and mechanical properties. The crystalline structure, phase-transformation and mechanical response were characterized by X-ray diffraction (XRD), Differential Scanning Calorimetry (DSC) and Nano-indentation techniques, respectively. The films were deposited on silicon substrates maintained at temperatures in the range 300 to 500 degrees C and post-annealed at 600 degrees C for four hours to ensure film crystallinity. Films deposited at 300 degrees C and annealed for 600 degrees C have exhibited crystalline behavior with Austenite phase as the prominent phase. Deposition onto substrates held at higher deposition temperatures (400 and 500 degrees C) resulted in the co-existence of Austenite phase along with Martensite phase. The increase in deposition rates corresponding to increase in cathode current from 250 to 350 mA has also resulted in the appearance of Martensite phase as well as improvement in crystallinity. XRD analysis revealed that the crystalline film structure is strongly influenced by process parameters such as substrate temperature and deposition rate. DSC results indicate that the film deposited at 300 degrees C had its crystallization temperature at 445 degrees C in the first thermal cycle, which is further confirmed by stress temperature response. In the second thermal cycle the Austenite and Martensite transitions were observed at 75 and 60 degrees C respectively. However, the films deposited at 500 degrees C had the Austenite and Martensite transitions at 73 and 58 degrees C, respectively. Elastic modulus and hardness values increased from 93 to 145 GPa and 7.2 to 12.6 GPa, respectively, with increase in deposition rates. These results are explained on the basis of change in film composition and crystallization. (C) 2010 Published by Elsevier Ltd
Resumo:
The similar to 2500 km long Himalayan arc has experienced three large to great earthquakes of M-w 7.8 to 8.4 during the past century, but none produced surface rupture. Paleoseismic studies have been conducted during the last decade to begin understanding the timing, size, rupture extent, return period, and mechanics of the faulting associated with the occurrence of large surface rupturing earthquakes along the similar to 2500 km long Himalayan Frontal Thrust (HFT) system of India and Nepal. The previous studies have been limited to about nine sites along the western two-thirds of the HFT extending through northwest India and along the southern border of Nepal. We present here the results of paleoseismic investigations at three additional sites further to the northeast along the HFT within the Indian states of West Bengal and Assam. The three sites reside between the meizoseismal areas of the 1934 Bihar-Nepal and 1950 Assam earthquakes. The two westernmost of the sites, near the village of Chalsa and near the Nameri Tiger Preserve, show that offsets during the last surface rupture event were at minimum of about 14 m and 12 m, respectively. Limits on the ages of surface rupture at Chalsa (site A) and Nameri (site B), though broad, allow the possibility that the two sites record the same great historical rupture reported in Nepal around A.D. 1100. The correlation between the two sites is supported by the observation that the large displacements as recorded at Chalsa and Nameri would most likely be associated with rupture lengths of hundreds of kilometers or more and are on the same order as reported for a surface rupture earthquake reported in Nepal around A.D. 1100. Assuming the offsets observed at Chalsa and Nameri occurred synchronously with reported offsets in Nepal, the rupture length of the event would approach 700 to 800 km. The easternmost site is located within Harmutty Tea Estate (site C) at the edges of the 1950 Assam earthquake meizoseismal area. Here the most recent event offset is relatively much smaller (<2.5 m), and radiocarbon dating shows it to have occurred after A.D. 1100 (after about A.D. 1270). The location of the site near the edge of the meizoseismal region of the 1950 Assam earthquake and the relatively lesser offset allows speculation that the displacement records the 1950 M-w 8.4 Assam earthquake. Scatter in radiocarbon ages on detrital charcoal has not resulted in a firm bracket on the timing of events observed in the trenches. Nonetheless, the observations collected here, when taken together, suggest that the largest of thrust earthquakes along the Himalayan arc have rupture lengths and displacements of similar scale to the largest that have occurred historically along the world's subduction zones.