63 resultados para modeling and simulation
Resumo:
Coarse Grained Reconfigurable Architectures (CGRA) are emerging as embedded application processing units in computing platforms for Exascale computing. Such CGRAs are distributed memory multi- core compute elements on a chip that communicate over a Network-on-chip (NoC). Numerical Linear Algebra (NLA) kernels are key to several high performance computing applications. In this paper we propose a systematic methodology to obtain the specification of Compute Elements (CE) for such CGRAs. We analyze block Matrix Multiplication and block LU Decomposition algorithms in the context of a CGRA, and obtain theoretical bounds on communication requirements, and memory sizes for a CE. Support for high performance custom computations common to NLA kernels are met through custom function units (CFUs) in the CEs. We present results to justify the merits of such CFUs.
Resumo:
This paper presents a lower bound limit analysis approach for solving an axisymmetric stability problem by using the Drucker-Prager (D-P) yield cone in conjunction with finite elements and nonlinear optimization. In principal stress space, the tip of the yield cone has been smoothened by applying the hyperbolic approximation. The nonlinear optimization has been performed by employing an interior point method based on the logarithmic barrier function. A new proposal has also been given to simulate the D-P yield cone with the Mohr-Coulomb hexagonal yield pyramid. For the sake of illustration, bearing capacity factors N-c, N-q and N-gamma have been computed, as a function of phi, both for smooth and rough circular foundations. The results obtained from the analysis compare quite well with the solutions reported from literature.
Resumo:
Importance of the field: The shift in focus from ligand based design approaches to target based discovery over the last two to three decades has been a major milestone in drug discovery research. Currently, it is witnessing another major paradigm shift by leaning towards the holistic systems based approaches rather the reductionist single molecule based methods. The effect of this new trend is likely to be felt strongly in terms of new strategies for therapeutic intervention, new targets individually and in combinations, and design of specific and safer drugs. Computational modeling and simulation form important constituents of new-age biology because they are essential to comprehend the large-scale data generated by high-throughput experiments and to generate hypotheses, which are typically iterated with experimental validation. Areas covered in this review: This review focuses on the repertoire of systems-level computational approaches currently available for target identification. The review starts with a discussion on levels of abstraction of biological systems and describes different modeling methodologies that are available for this purpose. The review then focuses on how such modeling and simulations can be applied for drug target discovery. Finally, it discusses methods for studying other important issues such as understanding targetability, identifying target combinations and predicting drug resistance, and considering them during the target identification stage itself. What the reader will gain: The reader will get an account of the various approaches for target discovery and the need for systems approaches, followed by an overview of the different modeling and simulation approaches that have been developed. An idea of the promise and limitations of the various approaches and perspectives for future development will also be obtained. Take home message: Systems thinking has now come of age enabling a `bird's eye view' of the biological systems under study, at the same time allowing us to `zoom in', where necessary, for a detailed description of individual components. A number of different methods available for computational modeling and simulation of biological systems can be used effectively for drug target discovery.
Resumo:
REDEFINE is a reconfigurable SoC architecture that provides a unique platform for high performance and low power computing by exploiting the synergistic interaction between coarse grain dynamic dataflow model of computation (to expose abundant parallelism in applications) and runtime composition of efficient compute structures (on the reconfigurable computation resources). We propose and study the throttling of execution in REDEFINE to maximize the architecture efficiency. A feature specific fast hybrid (mixed level) simulation framework for early in design phase study is developed and implemented to make the huge design space exploration practical. We do performance modeling in terms of selection of important performance criteria, ranking of the explored throttling schemes and investigate effectiveness of the design space exploration using statistical hypothesis testing. We find throttling schemes which give appreciable (24.8%) overall performance gain in the architecture and 37% resource usage gain in the throttling unit simultaneously.
Resumo:
A brief discussion and review of the geothermal reservoir systems, geothermal energy and modeling and simulation of the geothermal reservoirs has been presented here. Different types of geothermal reservoirs and their governing equations have been discussed first. The conceptual and numerical modeling along with the representation of flow though fractured media, some issues related to non isothermal flow through fractured media, the efficiency of the geothermal reservoir, structure of the numerical models, boundary conditions and calibration procedures have been illustrated. A brief picture of the Indian scenario and some barriers related with geothermal power are discussed and presented thereafter. Finally some gaps of the existing knowledge and recent focuses of research are discussed.
Resumo:
We consider the problem of optimizing the workforce of a service system. Adapting the staffing levels in such systems is non-trivial due to large variations in workload and the large number of system parameters do not allow for a brute force search. Further, because these parameters change on a weekly basis, the optimization should not take longer than a few hours. Our aim is to find the optimum staffing levels from a discrete high-dimensional parameter set, that minimizes the long run average of the single-stage cost function, while adhering to the constraints relating to queue stability and service-level agreement (SLA) compliance. The single-stage cost function balances the conflicting objectives of utilizing workers better and attaining the target SLAs. We formulate this problem as a constrained parameterized Markov cost process parameterized by the (discrete) staffing levels. We propose novel simultaneous perturbation stochastic approximation (SPSA)-based algorithms for solving the above problem. The algorithms include both first-order as well as second-order methods and incorporate SPSA-based gradient/Hessian estimates for primal descent, while performing dual ascent for the Lagrange multipliers. Both algorithms are online and update the staffing levels in an incremental fashion. Further, they involve a certain generalized smooth projection operator, which is essential to project the continuous-valued worker parameter tuned by our algorithms onto the discrete set. The smoothness is necessary to ensure that the underlying transition dynamics of the constrained Markov cost process is itself smooth (as a function of the continuous-valued parameter): a critical requirement to prove the convergence of both algorithms. We validate our algorithms via performance simulations based on data from five real-life service systems. For the sake of comparison, we also implement a scatter search based algorithm using state-of-the-art optimization tool-kit OptQuest. From the experiments, we observe that both our algorithms converge empirically and consistently outperform OptQuest in most of the settings considered. This finding coupled with the computational advantage of our algorithms make them amenable for adaptive labor staffing in real-life service systems.
Resumo:
In this paper we present HyperCell as a reconfigurable datapath for Instruction Extensions (IEs). HyperCell comprises an array of compute units laid over a switch network. We present an IE synthesis methodology that enables post-silicon realization of IE datapaths on HyperCell. The synthesis methodology optimally exploits hardware resources in HyperCell to enable software pipelined execution of IEs. Exploitation of temporal reuse of data in HyperCell results in significant reduction of input/output bandwidth requirements of HyperCell.
Resumo:
Magnetorheological dampers are intrinsically nonlinear devices, which make the modeling and design of a suitable control algorithm an interesting and challenging task. To evaluate the potential of magnetorheological (MR) dampers in control applications and to take full advantages of its unique features, a mathematical model to accurately reproduce its dynamic behavior has to be developed and then a proper control strategy has to be taken that is implementable and can fully utilize their capabilities as a semi-active control device. The present paper focuses on both the aspects. First, the paper reports the testing of a magnetorheological damper with an universal testing machine, for a set of frequency, amplitude, and current. A modified Bouc-Wen model considering the amplitude and input current dependence of the damper parameters has been proposed. It has been shown that the damper response can be satisfactorily predicted with this model. Second, a backstepping based nonlinear current monitoring of magnetorheological dampers for semi-active control of structures under earthquakes has been developed. It provides a stable nonlinear magnetorheological damper current monitoring directly based on system feedback such that current change in magnetorheological damper is gradual. Unlike other MR damper control techniques available in literature, the main advantage of the proposed technique lies in its current input prediction directly based on system feedback and smooth update of input current. Furthermore, while developing the proposed semi-active algorithm, the dynamics of the supplied and commanded current to the damper has been considered. The efficiency of the proposed technique has been shown taking a base isolated three story building under a set of seismic excitation. Comparison with widely used clipped-optimal strategy has also been shown.
Resumo:
One of the most important factors that affect the pointing of precision payloads and devices in space platforms is the vibration generated due to static and dynamic unbalanced forces of rotary equipments placed in the neighborhood of payload. Generally, such disturbances are of low amplitude, less than 1 kHz, and are termed as ‘micro-vibrations’. Due to low damping in the space structure, these vibrations have long decay time and they degrade the performance of payload. This paper addresses the design, modeling and analysis of a low frequency space frame platform for passive and active attenuation of micro-vibrations. This flexible platform has been designed to act as a mount for devices like reaction wheels, and consists of four folded continuous beams arranged in three dimensions. Frequency and response analysis have been carried out by varying the number of folds, and thickness of vertical beam. Results show that lower frequencies can be achieved by increasing the number of folds and by decreasing the thickness of the blade. In addition, active vibration control is studied by incorporating piezoelectric actuators and sensors in the dynamic model. It is shown using simulation that a control strategy using optimal control is effective for vibration suppression under a wide variety of loading conditions.
Resumo:
We develop four algorithms for simulation-based optimization under multiple inequality constraints. Both the cost and the constraint functions are considered to be long-run averages of certain state-dependent single-stage functions. We pose the problem in the simulation optimization framework by using the Lagrange multiplier method. Two of our algorithms estimate only the gradient of the Lagrangian, while the other two estimate both the gradient and the Hessian of it. In the process, we also develop various new estimators for the gradient and Hessian. All our algorithms use two simulations each. Two of these algorithms are based on the smoothed functional (SF) technique, while the other two are based on the simultaneous perturbation stochastic approximation (SPSA) method. We prove the convergence of our algorithms and show numerical experiments on a setting involving an open Jackson network. The Newton-based SF algorithm is seen to show the best overall performance.
Resumo:
Abstract—This document introduces a new kinematic simulation of a wheeled mobile robot operating on uneven terrain. Our modeling method borrows concepts from dextrous manipulation. This allows for an accurate simulation of the way 3-dimensional wheels roll over a smooth ground surface. The purpose of the simulation is to validate a new concept for design of off-road wheel suspensions, called Passive Variable Camber (PVC). We show that PVC eliminates kinematic slip for an outdoor robot. Both forward and inverse kinematics are discussed and simulation results are presented.
Resumo:
Charge linearization techniques have been used over the years in advanced compact models for bulk and double-gate MOSFETs in order to approximate the position along the channel as a quadratic function of the surface potential (or inversion charge densities) so that the terminal charges can be expressed as a compact closed-form function of source and drain end surface potentials (or inversion charge densities). In this paper, in case of the independent double-gate MOSFETs, we show that the same technique could be used to model the terminal charges quite accurately only when the 1-D Poisson solution along the channel is fully hyperbolic in nature or the effective gate voltages are same. However, for other bias conditions, it leads to significant error in terminal charge computation. We further demonstrate that the amount of nonlinearity that prevails between the surface potentials along the channel actually dictates if the conventional charge linearization technique could be applied for a particular bias condition or not. Taking into account this nonlinearity, we propose a compact charge model, which is based on a novel piecewise linearization technique and shows excellent agreement with numerical and Technology Computer-Aided Design (TCAD) simulations for all bias conditions and also preserves the source/drain symmetry which is essential for Radio Frequency (RF) circuit design. The model is implemented in a professional circuit simulator through Verilog-A, and simulation examples for different circuits verify good model convergence.
Resumo:
Critical applications like cyclone tracking and earthquake modeling require simultaneous high-performance simulations and online visualization for timely analysis. Faster simulations and simultaneous visualization enable scientists provide real-time guidance to decision makers. In this work, we have developed an integrated user-driven and automated steering framework that simultaneously performs numerical simulations and efficient online remote visualization of critical weather applications in resource-constrained environments. It considers application dynamics like the criticality of the application and resource dynamics like the storage space, network bandwidth and available number of processors to adapt various application and resource parameters like simulation resolution, simulation rate and the frequency of visualization. We formulate the problem of finding an optimal set of simulation parameters as a linear programming problem. This leads to 30% higher simulation rate and 25-50% lesser storage consumption than a naive greedy approach. The framework also provides the user control over various application parameters like region of interest and simulation resolution. We have also devised an adaptive algorithm to reduce the lag between the simulation and visualization times. Using experiments with different network bandwidths, we find that our adaptive algorithm is able to reduce lag as well as visualize the most representative frames.
Resumo:
There have been several studies on the performance of TCP controlled transfers over an infrastructure IEEE 802.11 WLAN, assuming perfect channel conditions. In this paper, we develop an analytical model for the throughput of TCP controlled file transfers over the IEEE 802.11 DCF with different packet error probabilities for the stations, accounting for the effect of packet drops on the TCP window. Our analysis proceeds by combining two models: one is an extension of the usual TCP-over-DCF model for an infrastructure WLAN, where the throughput of a station depends on the probability that the head-of-the-line packet at the Access Point belongs to that station; the second is a model for the TCP window process for connections with different drop probabilities. Iterative calculations between these models yields the head-of-the-line probabilities, and then, performance measures such as the throughputs and packet failure probabilities can be derived. We find that, due to MAC layer retransmissions, packet losses are rare even with high channel error probabilities and the stations obtain fair throughputs even when some of them have packet error probabilities as high as 0.1 or 0.2. For some restricted settings we are also able to model tail-drop loss at the AP. Although involving many approximations, the model captures the system behavior quite accurately, as compared with simulations.