155 resultados para Nudging, Choice Architecture, Libertarian Paternalism, Regulation
Resumo:
In modern wireline and wireless communication systems, Viterbi decoder is one of the most compute intensive and essential elements. Each standard requires a different configuration of Viterbi decoder. Hence there is a need to design a flexible reconfigurable Viterbi decoder to support different configurations on a single platform. In this paper we present a reconfigurable Viterbi decoder which can be reconfigured for standards such as WCDMA, CDMA2000, IEEE 802.11, DAB, DVB, and GSM. Different parameters like code rate, constraint length, polynomials and truncation length can be configured to map any of the above mentioned standards. Our design provides higher throughput and scalable power consumption in various configuration of the reconfigurable Viterbi decoder. The power and throughput can also be optimized for different standards.
Resumo:
Queens and workers are not morphologically differentiated in the primitively eusocial wasp, Ropalidia marginata. Upon removal of the queen, one of the workers becomes extremely aggressive, but immediately drops her aggression if the queen is returned. If the queen is not returned, this hyper-aggressive individual, the potential queen (PQ), will develop her ovaries, lose her hyper-aggression, and become the next colony queen. Because of the non-aggressive nature of the queen, and because the PQ loses her aggression by the time she starts laying eggs, we hypothesized that regulation of worker reproduction in R marginata is mediated by pheromones rather than by physical aggression. Based on the immediate loss of aggression by the PQ upon return of the queen, we developed a bioassay to test whether the queen's Dufour's gland is, at least, one of the sources of the queen pheromone. Macerates of the queen's Dufour's gland, but not that of the worker's Dufour's gland, mimic the queen in making the PQ decrease her aggression. We also correctly distinguished queens and workers of R. marginata nests by a discriminant function analysis based on the chemical composition of their respective Dufour's glands.
Resumo:
REDEFINE is a reconfigurable SoC architecture that provides a unique platform for high performance and low power computing by exploiting the synergistic interaction between coarse grain dynamic dataflow model of computation (to expose abundant parallelism in applications) and runtime composition of efficient compute structures (on the reconfigurable computation resources). We propose and study the throttling of execution in REDEFINE to maximize the architecture efficiency. A feature specific fast hybrid (mixed level) simulation framework for early in design phase study is developed and implemented to make the huge design space exploration practical. We do performance modeling in terms of selection of important performance criteria, ranking of the explored throttling schemes and investigate effectiveness of the design space exploration using statistical hypothesis testing. We find throttling schemes which give appreciable (24.8%) overall performance gain in the architecture and 37% resource usage gain in the throttling unit simultaneously.
Resumo:
Mycobacterium tuberculosis is a successful pathogen that overcomes numerous challenges presented by the immune system of the host. This bacterium usually establishes a chronic infection in the host where it may silently persist inside a granuloma until, a failure in host defenses, leads to manifestation of the disease. None of the conventional anti-tuberculosis drugs are able to target these persisting bacilli. Development of drugs against such persisting bacilli is a constant challenge since the physiology of these dormant bacteria is still not understood at the molecular level. Some evidence suggests that the in vivo environment encountered by the persisting bacteria is anoxic and nutritionally starved. Based on these assumptions, anaerobic and starved cultures are used as models to study the molecular basis of dormancy. This review outlines the problem of persistence of M. tuberculosis and the various in vitro models used to study mycobacterial latency. The basis of selecting the nutritional starvation model has been outlined here. Also, the choice of M. smegmatis as a model suitable for studying mycobacterial latency is discussed. Lastly, general issues related to oxidative stress and bacterial responses to it have been elaborated. We have also discussed general control of OxyR-mediated regulation and emphasized the processes which manifest in the absence of functional OxyR in the bacteria. Lastly, a new class of protein called Dps has been reviewed for its important role in protecting DNA under stress.
Resumo:
SLC22A18, a poly-specific organic cation transporter, is paternally imprinted in humans and mice. It shows loss-of-heterozygosity in childhood and adult tumors, and gain-of-imprinting in hepatocarcinomas and breast cancers. Despite the importance of this gene, its transcriptional regulation has not been studied, and the promoter has not yet been characterized. We therefore set out to identify the potential cis-regulatory elements including the promoter of this gene. The luciferase reporter assay in human cells indicated that a region from -120 by to +78 by is required for the core promoter activity. No consensus TATA or CHAT boxes were found in this region, but two Sp1 binding sites were conserved in human, chimpanzee, mouse and rat. Mutational analysis of the two Sp1 sites suggested their requirement for the promoter activity. Chromatin-immunoprecipitation showed binding of Sp1 to the promoter region in vivo. Overexpression of Sp1 in Drosophila Sp1-null SL2 cells suggested that Sp1 is the transactivator of the promoter. The human core promoter was functional in mouse 3T3 and monkey COS7 cells. We found a CpG island which spanned the core promoter and exon 1. COBRA technique did not reveal promoter methylation in 10 normal oral tissues, 14 oral tumors, and two human cell lines HuH7 and A549. This study provides the first insight into the mechanism that controls expression of this imprinted tumor suppressor gene. A COBRA-based assay has been developed to look for promoter methylation in different cancers. The present data will help to understand the regulation of this gene and its role in tumorigenesis. (C) 2008 Elsevier B.V. All rights reserved.
Resumo:
SLC22A18, a poly-specific organic cation transporter, is paternally imprinted in humans and mice. It shows loss-of-heterozygosity in childhood and adult tumors, and gain-of-imprinting in hepatocarcinomas and breast cancers. Despite the importance of this gene, its transcriptional regulation has not been studied, and the promoter has not yet been characterized. We therefore set out to identify the potential cis-regulatory elements including the promoter of this gene. The luciferase reporter assay in human cells indicated that a region from -120 by to +78 by is required for the core promoter activity. No consensus TATA or CHAT boxes were found in this region, but two Sp1 binding sites were conserved in human, chimpanzee, mouse and rat. Mutational analysis of the two Sp1 sites suggested their requirement for the promoter activity. Chromatin-immunoprecipitation showed binding of Sp1 to the promoter region in vivo. Overexpression of Sp1 in Drosophila Sp1-null SL2 cells suggested that Sp1 is the transactivator of the promoter. The human core promoter was functional in mouse 3T3 and monkey COS7 cells. We found a CpG island which spanned the core promoter and exon 1. COBRA technique did not reveal promoter methylation in 10 normal oral tissues, 14 oral tumors, and two human cell lines HuH7 and A549. This study provides the first insight into the mechanism that controls expression of this imprinted tumor suppressor gene. A COBRA-based assay has been developed to look for promoter methylation in different cancers. The present data will help to understand the regulation of this gene and its role in tumorigenesis. (C) 2008 Elsevier B.V. All rights reserved.
Resumo:
The induction of nitrate reductase (NADPH:nitrate oxidoreductase, EC 1.6.6.3) by nitrate in Neurospora crassa and its control by amino acids have been studied. The growth-inhibitory amino acids, isoleucine and cysteine as well as the growth-promotory ones, glutamine, asparagine, arginine, histidine and NH4+, repress nitrate reductase effectively. Methionine, tryptophan, proline, aspartic acid and glutamic acid exert little control on nitrate reductase. The repression of nitrate reductase by cysteine, isoleucine, glutamine and asparagine is accompanied by inactivation of the enzyme present initially. The nitrate-induced NADPH-cytochrome c reductase (NADPH:cytochrome c oxidoreductase, EC 1.6.2.3) is also repressed by amino acids which control nitrate reductase, providing further evidence to show that these two enzyme activities may reside in the same protein. Catalase (H2O2:H2O2 oxidoreductase, EC 1.11.1.6) has been found to be induced subsequent to the induction of nitrate reductase by nitrate in N. crassa. The induction of catalase is probably by its substrate H2O2 which would be formed by the interaction of the flavine component of nitrate reductase with oxygen. The amino acids which control nitrate reductase, repress catalase also. The catalase level appears to be determined by the nitrate reductase activity of the mycelia.
Resumo:
The concentration of liver ubiquinone increased progressively with the time of feeding ubiquinone, and this increase was reflected in all the cell fractions. 2. 2. Inhibition of sterol synthesis by ubiquinone was exerted only in the liver, not in the kidney or intestine. 3. 3. Extending the period of feeding ubiquinone or increasing the concentration of ubiquinone fed had no effect on the extent of inhibition. 4. 4. Inhibition was found to be specific to ubiquinone-9, the natural major homologue in the rat liver; other homologues were ineffective. 5. 5. The site of inhibition by ubiquinone was indicated to be between acetyl-CoA and mevalonate, since there was no change in fatty acid and ketone body synthesis in ubiquinone-fed animals as compared to normal animals.
Resumo:
A reciprocal relationship exists between the cytochrome P-450 content and d-aminolaevulinate synthetase activity in adult rats. In young rats the basal d-aminolaevulinate synthetase activity is higher and the cytochrome P-450 content is lower compared with the adult rat liver. Administration of allylisopropylacetamide neither induces the enzyme nor causes degradation of cytochrome P-450 in the young rat liver, unlike adult rat liver. Allylisopropylacetamide fails to induce d-aminolaevulinate synthetase in adrenalectomized–ovariectomized animals or intact animals pretreated with successive doses of the drug, in the absence of cortisol. The cortisol-mediated induction of the enzyme is sensitive to actinomycin D. Allylisopropylacetamide administration degrades microsomal haem but not nuclear haem. Haem does not counteract the decrease in cytochrome P-450 content caused by allylisopropylacetamide administration, but there is evidence for the formation of drug-resistant protein-bound haem in liver microsomal material under these conditions. Phenobarbital induces d-aminolaevulinate synthetase under conditions when there is no breakdown of cytochrome P-450. On the basis of these results and those already published, a model is proposed for the regulation of d-aminolaevulinate synthetase induction in rat liver.
Resumo:
ATP, given intraperitoneally to starved rats stimulates hepatic biosynthesis of sterols at a pre-mevalonate site.
Resumo:
The radial current density on an MPD arcjet cathode surface is theoretically investigated for five propellants. It is found that excessive current concentration at the upstream end of the cathode occurs in the case of hydrogen. This undesirable effect is traced to the higher electrical conductivity of hydrogen plasma.
Resumo:
H.264 video standard achieves high quality video along with high data compression when compared to other existing video standards. H.264 uses context-based adaptive variable length coding (CAVLC) to code residual data in Baseline profile. In this paper we describe a novel architecture for CAVLC decoder including coeff-token decoder, level decoder total-zeros decoder and run-before decoder UMC library in 0.13 mu CMOS technology is used to synthesize the proposed design. The proposed design reduces chip area and improves critical path performance of CAVLC decoder in comparison with [1]. Macroblock level (including luma and chroma) pipeline processing for CAVLC is implemented with an average of 141 cycles (including pipeline buffering) per macroblock at 250MHz clock frequency. To compare our results with [1] clock frequency is constrained to 125MHz. The area required for the proposed architecture is 17586 gates, which is 22.1% improvement in comparison to [1]. We obtain a throughput of 1.73 * 10(6) macroblocks/second, which is 28% higher than that reported in [1]. The proposed design meets the processing requirement of 1080HD [5] video at 30frames/seconds.