88 resultados para Color measurement
Resumo:
By using the bender and extender elements tests, the travel times of the shear (S) and the primary (P) waves were measured for dry sand samples at different relative densities and effective confining pressures. Three methods of interpretations, namely, (i) the first time of arrival, (ii) the first peak to peak, and (iii) the cross-correlation method, were employed. All the methods provide almost a unique answer associated with the P-wave measurements. On contrary, a difference was noted in the arrival times obtained from the different methods for the S-wave due to the near field effect. The resonant column tests in the torsional mode were also performed to check indirectly the travel time of the shear wave. The study reveals that as compared to the S-wave, it is more reliable to depend on the arrival times’ measurement for the P-wave.
Resumo:
Accurate mass flow measurement is very important in various monitoring and control applications. This paper proposes a novel method of fluid flow measurement by compensating the pressure drop across the ends of measuring unit using a compensating pump. The pressure drop due to the flow is balanced by a feedback control loop. This is a null-deflection type of measurement. As the insertion of such a measuring unit does not affect the functioning of the systems, this is also a non-disruptive flow measurement method. The implementation and design of such a unit are discussed. The system is modeled and simulated using the bond graph technique and it is experimentally validated. (C) 2009 Elsevier Ltd. All rights reserved.
Resumo:
A three-terminal capacitance bridge is developed for the measurement of the dielectric constant of lossy liquids. Using this modified ratio transformer bridge, the capacitance shunted by a resistance as low as 50 Omega is measured at 10 kHz. The capacitance error associated with the inductance of the connecting wire is compensated using the novel method of introducing an additional transformer to the existing ratio transformer bridge. Other sources of capacitance errors, such as the non-zero output impedence of the ratio transformer and the shield capacitances of the cables, are discussed.
Resumo:
In this paper, we present a growing and pruning radial basis function based no-reference (NR) image quality model for JPEG-coded images. The quality of the images are estimated without referring to their original images. The features for predicting the perceived image quality are extracted by considering key human visual sensitivity factors such as edge amplitude, edge length, background activity and background luminance. Image quality estimation involves computation of functional relationship between HVS features and subjective test scores. Here, the problem of quality estimation is transformed to a function approximation problem and solved using GAP-RBF network. GAP-RBF network uses sequential learning algorithm to approximate the functional relationship. The computational complexity and memory requirement are less in GAP-RBF algorithm compared to other batch learning algorithms. Also, the GAP-RBF algorithm finds a compact image quality model and does not require retraining when the new image samples are presented. Experimental results prove that the GAP-RBF image quality model does emulate the mean opinion score (MOS). The subjective test results of the proposed metric are compared with JPEG no-reference image quality index as well as full-reference structural similarity image quality index and it is observed to outperform both.
Resumo:
Four algorithms, all variants of Simultaneous Perturbation Stochastic Approximation (SPSA), are proposed. The original one-measurement SPSA uses an estimate of the gradient of objective function L containing an additional bias term not seen in two-measurement SPSA. As a result, the asymptotic covariance matrix of the iterate convergence process has a bias term. We propose a one-measurement algorithm that eliminates this bias, and has asymptotic convergence properties making for easier comparison with the two-measurement SPSA. The algorithm, under certain conditions, outperforms both forms of SPSA with the only overhead being the storage of a single measurement. We also propose a similar algorithm that uses perturbations obtained from normalized Hadamard matrices. The convergence w.p. 1 of both algorithms is established. We extend measurement reuse to design two second-order SPSA algorithms and sketch the convergence analysis. Finally, we present simulation results on an illustrative minimization problem.
Resumo:
A novel approach for measurement of small rotation angles using imaging method is proposed and demonstrated. A plane mirror placed on a precision rotating table is used for imaging the newly designed composite coded pattern. The imaged patterns are captured with the help of a CCD camera. The angular rotation of the plane mirror is determined from a pair of the images of the pattern, captured once before and once after affecting the tilt of the mirror. Both simulation and experimental results suggest that the proposed approach not only retains the advantages of the original imaging method but also contributes significantly to the enhancement of its measuring range (+/- 4.13 degrees with accuracy of the order of 1 arcsec).
Resumo:
Aerodynamic forces and fore-body convective surface heat transfer rates over a 60 degrees apex-angle blunt cone have been simultaneously measured at a nominal Mach number of 5.75 in the hypersonic shock tunnel HST2. An aluminum model incorporating a three-component accelerometer-based balance system for measuring the aerodynamic forces and an array of platinum thin-film gauges deposited on thermally insulating backing material flush mounted on the model surface is used for convective surface heat transfer measurement in the investigations. The measured value of the drag coefficient varies by about +/-6% from the theoretically estimated value based on the modified Newtonian theory, while the axi-symmetric Navier-Stokes computations overpredict the drag coefficient by about 9%. The normalized values of measured heat transfer rates at 0 degrees angle of attack are about 11% higher than the theoretically estimated values. The aerodynamic and the heat transfer data presented here are very valuable for the validation of CFD codes used for the numerical computation of How fields around hypersonic vehicles.
Resumo:
Strain and temperature sensitivities of a type I Bragg grating inscribed in a germania doped silica fiber, fabricated under normal conditions and zero strain, are compared with that of a Bragg grating inscribed under pre-strained condition. The results obtained reveal that the strain and temperature sensitivities of the two gratings are different. Based on these results, we demonstrate a technique which enables discrimination of strain and temperature in a Fiber Bragg Grating (FBG) with a linear response. The present technique allows for an easy implementation of the sensor by providing a direct access to the grating region in the fiber and demands only a simple interrogation system.
Ultrasonic measurement of the elastic constants of sodium p-nitrophenolate dihydrate single crystals
Resumo:
Sodium p-nitrophenolate dihydrate single crystals possess excellent nonlinear optical properties such that they can be used for optical second-harmonic generation. It belongs to the orthorhombic system with the space group Ima2. Slow evaporation or slow cooling techniques can be used to grow good optical quality single crystals from supersaturated solution. All the nine elastic constants of this crystal have been measured using an ultrasonic technique. Samples for measurements have been cut along desired crystallographic axes and the pulse echo overlap technique has been used to measure longitudinal and shear ultrasonic wave velocities along appropriate symmetry directions in the crystal. The McSkimin Delta t criterion has been applied to determine the round trip travel time accurately, from which the nine elastic constants have been evaluated. Temperature variation of selected elastic constants in a limited range have also been measured and reported.
Resumo:
Sinusoidal structured light projection (SSLP) technique, specifically-phase stepping method, is in widespread use to obtain accurate, dense 3-D data. But, if the object under investigation possesses surface discontinuities, phase unwrapping (an intermediate step in SSLP) stage mandatorily require several additional images, of the object with projected fringes (of different spatial frequencies), as input to generate a reliable 3D shape. On the other hand, Color-coded structured light projection (CSLP) technique is known to require a single image as in put, but generates sparse 3D data. Thus we propose the use of CSLP in conjunction with SSLP to obtain dense 3D data with minimum number of images as input. This approach is shown to be significantly faster and reliable than temporal phase unwrapping procedure that uses a complete exponential sequence. For example, if a measurement with the accuracy obtained by interrogating the object with 32 fringes in the projected pattern is carried out with both the methods, new strategy proposed requires only 5 frames as compared to 24 frames required by the later method.
Resumo:
A simple apparatus to measure the absolute thermoelectric power of solids in the temperature range 4·2–300K is described. The cryostat and the associated instrumentation is simple to operate. Representative data of measurements on metallic wire and pressed pellets are given. An accuracy of better than 10% in absolute thermopower can be obtained in this apparatus.
Resumo:
The authors have developed a simple continuous-cooling method to determine specific heat of liquids and solids in the temperature range 100-300 K. The technique employs very simple instrumentation and continuously records the sample temperature as it cools to the bath temperature through a calibrated heat link. They have obtained specific heat values which agree with the reported data to within 3% for the samples investigated. This method also facilitates easy detection of abrupt changes in specific heat, as demonstrated in the observation of glass transition in some organic glass-forming systems. The method is sensitive to the study of relaxing heat capacity in supercooled liquids.
Resumo:
The properties of thin films depend to a large extent upon their mechanical stability which in turn is dependent on the intrinsic stresses developed during evaporation. This paper describes a simple method for the measurement of stresses in thin films by the use of real-time holographic interferometry.
Resumo:
A method is described for monitoring the concentration of endogenous receptor-bound gonadotropin in the ovarian tissue. This involved development of a radioimmunoassay procedure, the validity of which for measuring all of the tissue-bound hormone has been established. The specificity of the method of measurement was indicated by the fact that high levels of FSH could be measured only in target tissue such as follicles, while non-target organs showed little FSH. Using this method, the amount of FSH in the non-luteal ovarian tissue of the hamster at different stages of the estrous cycle was quantitated and compared with serum FSH levels found at these times. No correlation could be found between serum and tissue FSH levels at all times. On the morning of estrus, for example, when the serum level of FSH was high, the ovarian concentration was low, and on the evening of diestrus-2 the ovary exhibited high concentration of FSH, despite the serum FSH concentration being low at this time. The highest concentration of FSH in the ovary during the cycle was found on the evening of proestrus. Although a large amount of this was found in the Graafian follicles, a considerable amount could still be found in the �growing� follicles. Ovarian FSH concentration could be considered to be a reflection of FSH receptor content, since preventing the development of FSH receptors by blocking initiation of follicular development during the cycle resulted in a decrease in the concentration of FSH in the ovary. The high concentration of FSH in the ovary seen on the evening of diestrus-2 was not influenced either by varying the concentration of estrogen or by neutralization of LH. Neutralization of FSH on diestrus-2, on the other hand, caused a drastic reduction in the ovarian LH concentration on the next day (i.e. at proestrus), thus suggesting the importance of FSH in the induction of LH receptors.
Resumo:
We report a precise measurement of the hyperfine interval in the 2P(1/2) state of Li-7. The transition from the ground state (D-1 line) is accessed using a diode laser and the technique of saturated-absorption spectroscopy in hot Li vapor. The interval is measured by locking an acousto-optic modulator to the frequency difference between the two hyperfine peaks. The measured interval of 92.040(6) MHz is consistent with an earlier measurement reported by us using an atomic-beam spectrometer Das and Natarajan, J. Phys. B 41, 035001 (2008)]. The interval yields the magnetic dipole constant in the P-1/2 state as A = 46.047(3), which is discrepant from theoretical calculations by > 80 kHz.