134 resultados para nucleophilic aromatic substitution


Relevância:

20.00% 20.00%

Publicador:

Resumo:

A detailed polarographic (a.c. and d.c.) and coulometric investigation of nitrobenzene has been made at various pH values in the presence of different concentrations of ethanol. Below pH 4.7, two waves are apparent but above this pH, the second wave does not appear. Coulometric evidence indicates that the first and second waves correspond to the four-and two-electron processes, respectively. The coulometric method was not applicable in sodium hydroxide and sodium acetate solutions. When the diffusion coefficients (from the diaphragm cell) are used in the Ilkovic equation, no reliable conclusions can be reached for the number of electrons involved in the reduction process in alkaline solutions. The a.c. polarographic method gives evidence for the formation of species such as: C6H5NO2H22+, C6H5NO2− and C6H5NO22−. Analysis of d.c. polarographic data by Delahay's treatment of irreversible waves, indicates that the number of electrons involved in the rate-determining step is 2. In sodium hydroxide solutions, however, the first main wave is split indicating more than one rate-determining step. The results presented in this paper indicate that the first wave in the reduction of nitrobenzene is a four-electron process at all pH values. The second wave, which appears below pH 4.7, corresponds to a two-electron process irrespective of wave heights. The difference in the a.c. polarographic behaviour in acid and alkaline solutions has given evidence for the formation of species like C6H5NO2H2, C6H5NO2−, and C6H5NO22.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The para orientation by the carbonyl groups in the bromination of phenanthrenequinone derivatives has been explained on the basis of an excited state resulting from thermal excitation of the quinone and/or from a n→π* transition of the nonbonding electrons of the oxygen atoms. A general preparative method for the syntheses of 3-bromophenanthrenequinone derivatives has been developed. The structure of 2-nitro-6-bromophenanthrenequinone has been established by degradation. Synthesis of 2-nitro-6-bromofluorenone is described. Direct bromination of phenanthrenequinone to 2-bromo and 2,7-dibromo derivatives has also been described.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

When sodium borohydride is added to aqueous solutions of 2,4-dinitrophenylamino acids and related derivatives, an intense red color is formed. Measurement of the red color, with a 420 filter, permits the determination of such compounds in concentrations of 0.01 to 0.06 μmole per ml. with a precision to 2%. The reaction is highly specific-while 2,4-dinitroaniline will react to the test, o-, m-, and p-nitroanilines, 2,4-dinitrophenyl aryl or alkyl ethers, and 2,4-dinitrophenyl-imidazole and pyrrolidine derivatives will not. Heretofore aromatic nitro groups have been considered resistant to attack by sodium borohydride. The method, as developed, is applicable to the evaluation of the degree of substitution of protein amino groups by fluorodinitrobenzene.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Dipole moment measurements have been made in the case of a few aromatic hydrocarbon picrates, the values obtained being 2·18, 2·25, 2·97 (all in Debye units) for picrates of naphthalene, acenaphthene and phenanthrene respectively and the results discussed in terms of Mulliken's theory. Measurements have also been extended to include a few salt-like heterocyclic amine picrates.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The mechanism of hydroxylation reactions catalyzed by m-hydroxybenzoate-4-hydroxylase and anthranilate hydroxylase from Aspergillus niger was investigated using superoxide dismutase from ovine erythrocytes. Inclusion of superoxide dismutase in the assay mixtures of the two enzymes resulted in complete inhibition of the hydroxylation reaction, indicating the possible involvement of superoxide anions (O2−) in these reactions.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The green nitrosobenzene monomer is reduced polarographically to phenylhydroxylamine in the pH range 4—9. Though this reduction is known to be a two-electron process, coulometry invariably gives a lower value of n because of the reaction of unreacted nitrosobenzene and the phenylhydroxylamine formed. The green monomer is attacked by mercury in acid medium. In alkaline medium, the green monomer undergoes a change that follows first-order kinetics with respect to nitrosobenzene. The rate of the transformation depends on the solvent. It decreases in the order acetone > ethanol > dioxan.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Pt2+ ion dispersed in CeO2, Ce1-xTixO2-delta and TiO2 have been tested for preferential oxidation of carbon monoxide (PROX) in hydrogen rich stream. It is found that Pt2+ substituted CeO2 and Ce(1-x)TixO(2-delta) in the form of solid solution Ce0.98Pt0.02O2-delta and Ce0.83Ti0.15Pt0.02O2-delta are highly CO selective low temperature PROX catalysts in hydrogen rich stream. Just 15% of Ti substitution in CeO2 improves the overall PROX activity.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The green nitrosobenzene monomer is reduced polarographically to phenylhydroxylamine in the pH range 4—9. Though this reduction is known to be a two-electron process, coulometry invariably gives a lower value of n because of the reaction of unreacted nitrosobenzene and the phenylhydroxylamine formed. The green monomer is attacked by mercury in acid medium. In alkaline medium, the green monomer undergoes a change that follows first-order kinetics with respect to nitrosobenzene. The rate of the transformation depends on the solvent. It decreases in the order acetone > ethanol > dioxan.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Hydroxylation of aromatic compounds was observed in NADH-phenazine methosulfate-O2 model system known to generate superoxide anions (Image ). Addition of superoxide dismutase prepared from ovine erythrocytes to this hydroxylating system resulted in complete inhibition, suggesting an involvement of Image in aromatic hydroxylations.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

In order to understand the mechanism of decarboxylation by 2,3-dihydroxybenzoic acid decarboxylase, chemical modification studies were carried out. Specific modification of the amino acid residues with diethylpyrocarbonate, N-bromosuccinimide and N-ethylmaleiimide revealed that at least one residue each of histidine, tryptophan and cysteine were essential for the activity. Various substrate analogs which were potential inhibitors significantly protected the enzyme against inactivation. The modification of residues at low concentration of the reagents and the protection experiments suggested that these amino acid residues might be present at the active site. Studies also suggested that the carboxyl and ortho-hydroxyl groups of the substrate are essential for interaction with the enzyme.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Background: Stabilization strategies adopted by proteins under extreme conditions are very complex and involve various kinds of interactions. Recent studies have shown that a large proportion of proteins have their N- and C-terminal elements in close contact and suggested they play a role in protein folding and stability. However, the biological significance of this contact remains elusive. Methodology: In the present study, we investigate the role of N- and C-terminal residue interaction using a family 10 xylanase (BSX) with a TIM-barrel structure that shows stability under high temperature,alkali pH, and protease and SDS treatment. Based on crystal structure,an aromatic cluster was identified that involves Phe4, Trp6 and Tyr343 holding the Nand C-terminus together; this is a unique and important feature of this protein that might be crucial for folding and stabilityunder poly-extreme conditions. Conclusion: A series of mutants was created to disrupt this aromatic cluster formation and study the loss of stability and function under given conditions. While the deletions of Phe4 resulted in loss of stability, removal of Trp6 and Tyr343 affected in vivo folding and activity. Alanine substitution with Phe4, Trp6 and Tyr343 drastically decreased stability under all parameters studied. Importantly,substitution of Phe4 with Trp increased stability in SDS treatment.Mass spectrometry results of limited proteolysis further demonstrated that the Arg344 residue is highly susceptible to trypsin digestion in sensitive mutants such as DF4, W6A and Y343A, suggesting again that disruption of the Phe4-Trp6-Tyr343 (F-W-Y) cluster destabilizes the N-and C-terminal interaction. Our results underscore the importance of N- and C-terminal contact through aromatic interactions in protein folding and stability under extreme conditions, and these results may be useful to improve the stability of other proteins under suboptimal conditions.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

We report the Cl-*(P-2(1/2)) production dynamics in the near-UV dissociation of three isomers (cis-, gem-, and trans-) of dichloroethylene using the conventional resonance enhanced multiphoton ionization technique. Substantial amounts of Cl-* are produced in the wavelength range 222-304 nm. The Cl-* quantum yield (phi(*)) i maximum at 304 nm for all the isomers and phi(*)(cis) is markedly higher than phi(*)(gem) and phi(*)(trans) except at 222 nm. Existence of both direct and indirect dissociation pathways at these wavelengths complicates the Cl* production dynamics. The higher value of phi(*)(cis) originates from a large contribution from direct dissociation via the (n, sigma(*)) state.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The charge-transfer complexes of p-dichlorobenzene (PDB) with some aromatic π acceptors such as m-nitrobenzaldehyde (MNB), picric acid (PA), p-nitrobenzoic acid (PNB), and m-dinitrobenzene (MDNB) were prepared by slowly adding the acceptor to the molten donor and then cooling the mass to 15°C. The NQR frequencies of these complexes were measured at room temperature. Contrary to the theoretical prediction, the NQR shift is positive, indicating that the NQR shift in donor-acceptor complexes is indirectly related to the charge-transfer interaction. Bond properties are discussed in terms of frequency shift.