158 resultados para low temperature treatment
Resumo:
In this paper, we report a systematic study of low frequency 1∕fα resistance fluctuation in thin metal films (Ag on Si) at different stages of damage process when the film is subjected to high current stressing. The resistance fluctuation (noise) measurement was carried out in situ using a small ac bias that has been mixed with the dc stressing current. The experiment has been carried out as a function of temperature in the range of 150–350 K. The experiment establishes that the current stressed film, as it undergoes damage due to various migration forces, develops an additional low-frequency noise spectral power that does not have the usual 1∕f spectral shape. The magnitude of extra term has an activated temperature dependence (activation energy of ≈0.1 eV) and has a 1∕f1.5 spectral dependence. The activation energy is the same as seen from the temperature dependence of the lifetime of the film. The extra 1∕f1.5 spectral power changes the spectral shape of the noise power as the damage process progress. The extra term likely arising from diffusion starts in the early stage of the migration process during current stressing and is noticeable much before any change can be detected in simultaneous resistance measurements. The experiment carried out over a large temperature range establish a strong correlation between the evolution of the migration process in a current stressed film and the low-frequency noise component that is not a 1∕f noise.
Resumo:
Dense ZrB2-ZrC and ZrB2-ZrC x∼0.67 composites have been produced by reactive hot pressing (RHP) of stoichiometric and nonstoichiometric mixtures of Zr and B4C powders at 40 MPa and temperatures up to 1600 °C for 30 minutes. The role of Ni addition on reaction kinetics and densification of the composites has been studied. Composites of ∼97 pct relative density (RD) have been produced with the stoichiometric mixture at 1600 °C, while the composite with ∼99 pct RD has been obtained with excess Zr at 1200 °C, suggesting the formation of carbon deficient ZrC x that significantly aids densification by plastic flow and vacancy diffusion mechanism. Stoichiometric and nonstoichiometric composites have a hardness of ∼20 GPa. The grain sizes of ZrB2 and ZrC x∼0.67 are ∼0.6 and 0.4 μm, respectively, which are finer than those reported in the literature.
Resumo:
We report on the R-T measurement of carbon nanotube bundles from room temperature down to 1 K. The resistance at a particular temperature depends on the diameter of the bundle. The larger the bundle diameter is, the lower the value of the resistance. The resistance increases with the decrease in temperature as in the case of carbon, carbon glass resistance thermometer, and carbon nanotubes reported in the literature. The rate of the variation of resistance depends on the resistance of the bundle at room temperature which can be explored for the low temperature thermometry. Overall, the resistance and the sensitivity of the bundle depend on the bundle diameter which can be monitored easily.
Resumo:
The thermally activated plastic flow of polycrystalline cadmium was investigated by differentialstress creep tests at 86°K and tensile tests in the temperature range 86°–473°K. The activation energy (0.55 eV) at zero effective stress and the activation volume as a function of effective stress were obtained. It is concluded that intersection of glide and forest dislocations becomes rate controlling for low temperature deformation. The approximate stacking-fault width in cadmium is deduced to be “1.5b”.
Resumo:
The dislocation mechanisms for plastic flow in quenched AlMg alloys with 0.45, 0.9, 2.7 and 6.4 at. % Mg were investigated using tensile tests and change-in-stress creep experiments in the temperaturhttp://eprints.iisc.ernet.in/cgi/users/home?screen=EPrint::Edit&eprintid=28109&stage=core#te range 87° -473° K. The higher the magnesium content in the alloy, the higher was the temperature dependence of flow stress. The alloys showed no perceptible creep in the vicinity of room temperature, while they crept at lower as well as higher temperatures. The most probable cause of hardening at temperatures below ∼ 200° K was found to be the pinning of dislocations by randomly distributed solute atoms, while athermal locking of dislocations by dynamic strain ageing during creep was responsible for the negligibly small creep rate in the room temperature range.
Resumo:
Details of the design and operation of a Weissenberg camera suitable for x-ray investigations between -180°c and 200°c are presented. The camera employs a novel arrangement of spur and bevel gears to couple the goniometer spindle to the worm rod which controls the range of oscillation. The entire drive system and the goniometer assembly are mounted on a support which permits the insertion or removal of a cylindrical cassette from the gear-box side without disturbing the cooling assembly and the layer-line screen. The cassette can also be inserted from the opposite side. The specimen can be cooled either directly by a stream of liquid air or by the cold gas from its evaporation. Condensation of moisture at low temperatures is prevented by heating the layer-line tubes internally.
Resumo:
Low-temperature plastic flow in copper was investigated by studying its tensile and creep deformation characteristics. The dependence of the flow stress on temperature and strain rate was used to evaluate the thermal activation energy while the activation area was derived from the change-in-stress creep experiments. A value of 0.6 eV was obtained for the total obstacle energy both in electrolytic and commerical copper. The activation areas in copper of three selected purities fell in the range 1200 to 100 b2. A forest intersection mechanism seems to control the temperature dependent part of the flow stress. The increase in the athermal component of the flow stress with impurity content in copper is attributed to a change in the dislocation density. The investigation also revealed that thermal activation of some attractive junctions also takes place during low-temperature creep. The model of attractive junction formation on a stress decrement during creep, yields a value of 45±10 ergs cm-2 for the stacking fault energy in copper.
Resumo:
The low-temperature plastic flow of alpha-zirconium was studied by employing constantrate tensile tests and differential-stress creep experiments. The activation parameters, enthalpy and area, have been obtained as a function of stress for pure, as well as commercial zirconium. The activation area is independent of grain size and purity and falls to about 9b2 at high stresses. The deformation mechanism below about 700° K is found to be controlled by a single thermally activated process, and not a two-stage activation mechanism. Several dislocation mechanisms are examined and it is concluded that overcoming the Peierls energy humps by the formation of kink pairs in a length of dislocation is the rate-controlling mechanism. The total energy needed to nucleate a double kink is about 0.8 eV in pure zirconium and 1 eV in commercial zirconium
Resumo:
The growth of strongly oriented or epitaxial thin films of metal oxides generally requires relatively high growth temperatures or infusion of energy to the growth surface through means such as ion bombardment. We have grown high quality epitaxial thin films of Co3O4 on different substrates at a temperature as low as 400 degreesC by low-pressure metalorganic chemical vapour deposition (MOCVD) using cobalt(II) acetylacetonate as the precursor. With oxygen as the reactant gas, polycrystalline Co3O4 films are formed on glass and Si (100) in the temperature range 400-550 degreesC. Under similar conditions of growth. highly oriented films of Co3O4 are formed on SrTiO3 (100) and LaAlO3 (100). The activation energy for the growth of polycrystalline films on glass is significantly higher than that for epitaxial growth on SrTiO3 (100). The film on LaAlO3 (100) grown at 450 degreesC shows a rocking curve FWHM of 1.61 degrees, which reduces to 1.32 degrees when it is annealed in oxygen at 725 degreesC. The film on SrTiO3 (100) has a FWHM of 0.33 degrees (as deposited) and 0.29 (after annealing at 725 degreesC). The phi -scan analysis shows cube-on-cube epitaxy on both these substrates. The quality of epitaxy on SrTiO3 (100) is comparable to the best of the perovskite-based oxide thin films grown at significantly higher temperatures. A plausible mechanism is proposed for the observed low temperature epitaxy. (C) 2001 Published by Elsevier Science B.V.