54 resultados para disinfectant agents
Resumo:
A series of (2-aminothiazol-4-yl)methylester (5a-t) derivatives were synthesized in good yields and characterized by H-1 NMR, C-13 NMR, mass spectral and elemental analyses. The crystal structure of 5a was evidenced by X-ray diffraction study. The compounds were evaluated for their preliminary in vitro antibacterial, antifungal activity and were screened for antitubercular activity against Mycobacterium tuberculosis H37Rv strain. The synthesized compounds displayed interesting antimicrobial activity. (C) 2012 Elsevier Masson SAS. All rights reserved.
Resumo:
Mobile ad hoc networks (MANETs) is one of the successful wireless network paradigms which offers unrestricted mobility without depending on any underlying infrastructure. MANETs have become an exciting and im- portant technology in recent years because of the rapid proliferation of variety of wireless devices, and increased use of ad hoc networks in various applications. Like any other networks, MANETs are also prone to variety of attacks majorly in routing side, most of the proposed secured routing solutions based on cryptography and authentication methods have greater overhead, which results in latency problems and resource crunch problems, especially in energy side. The successful working of these mechanisms also depends on secured key management involving a trusted third authority, which is generally difficult to implement in MANET environ-ment due to volatile topology. Designing a secured routing algorithm for MANETs which incorporates the notion of trust without maintaining any trusted third entity is an interesting research problem in recent years. This paper propose a new trust model based on cognitive reasoning,which associates the notion of trust with all the member nodes of MANETs using a novel Behaviors-Observations- Beliefs(BOB) model. These trust values are used for detec- tion and prevention of malicious and dishonest nodes while routing the data. The proposed trust model works with the DTM-DSR protocol, which involves computation of direct trust between any two nodes using cognitive knowledge. We have taken care of trust fading over time, rewards, and penalties while computing the trustworthiness of a node and also route. A simulator is developed for testing the proposed algorithm, the results of experiments shows incorporation of cognitive reasoning for computation of trust in routing effectively detects intrusions in MANET environment, and generates more reliable routes for secured routing of data.
Resumo:
Many networks such as social networks and organizational networks in global companies consist of self-interested agents. The topology of these networks often plays a crucial role in important tasks such as information diffusion and information extraction. Consequently, growing a stable network having a certain topology is of interest. Motivated by this, we study the following important problem: given a certain desired network topology, under what conditions would best response (link addition/deletion) strategies played by self-interested agents lead to formation of a stable network having that topology. We study this interesting reverse engineering problem by proposing a natural model of recursive network formation and a utility model that captures many key features. Based on this model, we analyze relevant network topologies and derive a set of sufficient conditions under which these topologies emerge as pairwise stable networks, wherein no node wants to delete any of its links and no two nodes would want to create a link between them.
Resumo:
In this Letter, we report the structure activity relationship (SAR) studies on series of positional isomers of 5(6)-bromo-1-(phenyl)sulfonyl]-2-(4-nitrophenoxy)methyl]-1H-benzim idazoles derivatives 7(a-j) and 8(a j) synthesized in good yields and characterized by H-1 NMR, C-13 NMR and mass spectral analyses. The crystal structure of 7a was evidenced by X-ray diffraction study. The newly synthesized compounds were evaluated for their in vitro antibacterial activity against Staphylococcus aureus, (Gram-positive), Escherichia coil and Klebsiella pneumoniae (Gram-negative), antifungal activity against Candida albicans, Aspergillus flavus and Rhizopus sp. and antitubercular activity against Mycobacterium tuberculosis H37Rv, Mycobacterium smegmatis, Mycobacterium fortuitum and MDR-TB strains. The synthesized compounds displayed interesting antimicrobial activity. The compounds 7b, 7e and 7h displayed significant activity against Mycobacterium tuberculosis H37Rv strain.
Resumo:
A series of 2,5-di(4-aryloylaryloxymethyl)-1,3,4-oxadiazoles 9a-j were obtained via multistep synthesis from hydroxybenzophenones 4a-e. The cytotoxicity of compounds 9a-j was evaluated against human leukemia cell lilies (K562 and CEM). The compounds exhibited moderate to good anti-cancer activity with compounds 9b and 9i having a chloro group exhibiting the best activity (IC50 = 10 mu M). Compound 9i exhibited activity against both the cell lines and 9b only exhibited activity against CEM. Further, a lactate dehydrogenase (LDH) assay and DNA fragmentation studies of the compounds 9a-j were also performed. (C) 2013 Elsevier Masson SAS. All rights reserved.
Resumo:
Networks such as organizational network of a global company play an important role in a variety of knowledge management and information diffusion tasks. The nodes in these networks correspond to individuals who are self-interested. The topology of these networks often plays a crucial role in deciding the ease and speed with which certain tasks can be accomplished using these networks. Consequently, growing a stable network having a certain topology is of interest. Motivated by this, we study the following important problem: given a certain desired network topology, under what conditions would best response (link addition/deletion) strategies played by self-interested agents lead to formation of a pairwise stable network with only that topology. We study this interesting reverse engineering problem by proposing a natural model of recursive network formation. In this model, nodes enter the network sequentially and the utility of a node captures principal determinants of network formation, namely (1) benefits from immediate neighbors, (2) costs of maintaining links with immediate neighbors, (3) benefits from indirect neighbors, (4) bridging benefits, and (5) network entry fee. Based on this model, we analyze relevant network topologies such as star graph, complete graph, bipartite Turan graph, and multiple stars with interconnected centers, and derive a set of sufficient conditions under which these topologies emerge as pairwise stable networks. We also study the social welfare properties of the above topologies.
Resumo:
Aptamers, and the selection process known as Systematic Evolution of Ligands by Exponential Enrichment (SELEX) used to generate them, were first described more than twenty years ago. Since then, there have been numerous modifications to the selection procedures. This review discusses the use of modified bases as a means of enhancing serum stability and producing effective therapeutic tools, as well as functionalising these nucleic acids to be used as potential diagnostic agents.
Resumo:
Mycobacteria are an important group of pathogenic bacteria. We generated a series of DNA repair deficient strains of Mycobacterium smegmatis, a model organism, to understand the importance of various DNA repair proteins (UvrB, Ung, UdgB, MutY and Fpg) in survival of the pathogenic strains. Here, we compared tolerance of the M. smegmatis strains to genotoxic stress (ROS and RNI) under aerobic, hypoxic and recovery conditions of growth by monitoring their survival. We show an increased susceptibility of mycobacteria to genotoxic stress under hypoxia. UvrB deficiency led to high susceptibility of M. smegmatis to the DNA damaging agents. Ung was second in importance in strains with single deficiencies. Interestingly, we observed that while deficiency of UdgB had only a minor impact on the strain's susceptibility, its combination with Ung deficiency resulted in severe consequences on the strain's survival under genotoxic stress suggesting a strong interdependence of different DNA repair pathways in safeguarding genomic integrity. Our observations reinforce the possibility of targeting DNA repair processes in mycobacteria for therapeutic intervention during active growth and latency phase of the pathogen. High susceptibility of the UvrB, or the Ung/UdgB deficient strains to genotoxic stress may be exploited in generation of attenuated strains of mycobacteria. (C) 2013 Elsevier Ireland Ltd. All rights reserved.
Resumo:
Prevention or suppression of protein aggregation is of great importance in the context of protein storage, transportation and delivery. Traditionally chaperones or other chemically active agents are used to stop or diffuse native protein aggregation. We have used gold nanoparticles to prevent thermal aggregation of alcohol dehydrogenase (ADH), a protein that maintains the alcohol level in the liver and stomach. A light-scattering assay has been used to investigate the effect of gold nanoparticles on thermal aggregation of ADH and the result of our study has been summarized in Fig. 1. The scattered light intensity from the solution containing ADH decreases when 45 nm gold nanoparticles are added prior to heating (thermal denaturation) the solution, which indicates prevention of aggregation. The aggregation of the protein is suppressed to the extent of 96% with picomolar concentration of 45 nm gold nanoparticles while micromolar amounts of other proteins and biological substances are necessary to achieve the same effect. The extent varies with the size and the concentration of the gold NPs for the same protein concentration.
Resumo:
In our pursuit to develop new potential anticancer leads, we designed a combination of structural units of indole and substituted triazole; and a library of 1-{1-methyl-2-4-phenyl-5-(propan-2-ylsulfanyl)-4H-1,2,4-triazol-3-yl ]-1H-indol-3-yl}methanamine derivatives was synthesized and characterized. Cytotoxic evaluations of these molecules over a panel of three human cancer cell lines were carried out. Few molecules exhibited potent growth inhibitory action against the treated cancer cell lines at lower micro molar concentration. An in vitro assay investigation of these active compounds using recombinant human SIRT1 enzyme showed that one of the compounds (IT-14) inhibited the deacetylation activity of the enzyme. The in vivo study of IT-14 exemplified its promising action by reducing the prostate weight to the body weight ratio in prostate hyperplasia animal models. A remarkable decrease in the disruption of histoarchitecture of the prostate tissues isolated from IT-14 treated animal compared to that of the positive control was observed. The molecular interactions with SIRT1 enzyme were also supported by molecular docking simulations. Hence this compound can act as a lead molecule to treat prostatic hyperplasia. (C) 2013 Elsevier Masson SAS. All rights reserved.
Resumo:
Nonsteroid anti-inflammatory drugs (NSAIDs) represent standard therapy for the alleviation of pain and inflammation. At present various classes of compounds have been reported as selective inhibitors of cyclooxygenase-2 (COX-2). However, they are associated with adverse side effects. To address these issues, we report here a new class of compounds that exhibit potent analgesic and anti-inflammatory response. Substituted bromo-benzothiophene carboxamides (4-11) were examined for their analgesic and anti-inflammatory properties. Our findings demonstrate that newly synthesized bromo-benzothiophene carboxamide derivatives 4, 6, and 8 attenuate nociception and inflammation at lower concentration than classical NSAIDs, such as ibuprofen. These compounds act by selectively inhibiting COX-2 and by disrupting the prostaglandin-E2-dependent positive feedback of COX-2 regulation, which was further substantiated by reduction in the levels of cytokines, chemokines, neutrophil accumulation, synthesis of prostaglandin-E2, expression of COX-2, and neutrophil activation at lower concentration than the classic NSAID ibuprofen. Toxicological study reveals that these compounds are well tolerated and metabolized to avoid any toxicity. Thus, these molecules represent a new class of analgesic and anti-inflammatory agents. (c) 2014 IUBMB Life, 66(3):201-211, 2014
Advances in the molecular design of potential anticancer agents via targeting of human telomeric DNA
Resumo:
Telomerases are an attractive drug target to develop new generation drugs against cancer. A telomere appears from the chromosomal termini and protects it from double-stranded DNA degradation. A short telomere promotes genomic instability, like end-to-end fusion and regulates the over-expression of the telomere repairing enzyme, telomerase. The telomerase maintains the telomere length, which may lead to genetically abnormal situations, leading to cancer. Thus, the design and synthesis of an efficient telomerase inhibitor is a viable strategy toward anticancer drugs development. Accordingly, small molecule induced stabilization of the G-quadruplex structure, formed by the human telomeric DNA, is an area of contemporary scientific art. Several such compounds efficiently stabilize the G-quadruplex forms of nucleic acids, which often leads to telomerase inhibition. This Feature article presents the discovery and development of the telomere structure, function and evolution in telomere targeted anticancer drug design and incorporates the recent advances in this area, in addition to discussing the advantages and disadvantages in the methods, and prospects for the future.
Resumo:
Lipoplex nano-aggregates have been analyzed through biophysical characterization (electrostatics, structure, size and morphology), and biological studies (transfection efficiency and cell viability) in five cancer cell lines. Lipoplexes were prepared from pEGFP-C3 plasmid DNA (pDNA) and mixed liposomes, constituted by a zwitterionic lipid (DOPE) and a gemini cationic lipid (GCL) synthesized in this work, bis(hexadecyl dimethyl ammonium) oxyethylene], referred to as (C16Am)(2)(C2O)(n), (where n is the oxyethylene spacer length, n = 1, 2 or 3, between the ammonium heads). Cryo-TEM micrographs show nano-aggregates with two multilamellar structures, a cluster-type (at low-to-medium GCL composition) and a fingerprint-type that coexists with the cluster-type at medium GCL composition and appears alone at high GCL composition. SAXS diffractograms show that these lipoplexes present three lamellar structures, two of them coexisting at low and high GCL composition. The optimized transfection efficiency (TE) of pDNA was higher for lipoplexes containing GCLs with a longer (n = 3) or shorter (n = 1) polyoxyethylene spacer, at high GCL composition (alpha - 0.7) with low charge ratio (rho(eff) 2). In the all cancer cell lines studied, the TE of the optimized formulations was much better than those of both lipofectamine 2000 and lipoplexes with GCLs of the bis(hexadecyl dimethyl ammonium) alkane series recently reported. Probably, (a) the coexistence of two lamellar structures at high GCL composition synergizes the TE of these lipid vectors, (b) the orientation of the polyoxyethylene region in (C16Am)(2)(C2O)(3)/DOPE may occur in such a way that the spacing between two cationic heads becomes smaller than that in (C16Am)(2)(C2O)(2)/DOPE which is poor in terms of TE, and (c) the synergistic interactions between serum proteins and (C16Am)(2)(C2O)(n)/DOPE-pDNA lipoplexes containing a polyoxyethylene spacer improve TE, especially at high GCL content. Lipoplexes studied here show very low levels of toxicity, which confirm them as improved vectors of pDNA in gene therapy.
Resumo:
We report the fabrication of dual enzyme responsive hollow nanocapsules which can be targeted to deliver anticancer agents specifically inside cancer cells. The enzyme responsive elements, integrated in the nanocapsule walls, undergo degradation in the presence of either trypsin or hyaluronidase leading to the release of encapsulated drug molecules. These nanocapsules, which were crosslinked and functionalised with folic acid, showed minimal drug leakage when kept in pH 7.4 PBS buffer, but released the drug molecules at a rapid rate in the presence of either one of the triggering enzymes. Studies on cellular interactions of these nanocapsules revealed that doxorubicin loaded nanocapsules were taken up by cervical cancer cells via folic acid receptor medicated endocytosis. Interestingly the nanocapsules were able to disintegrate inside the cancer cells and release doxorubicin which then migrated into the nucleus to induce cell death. This study indicates that these nanocapsules fabricated from biopolymers can serve as an excellent platform for targeted intracellular drug delivery to cancer cells.