78 resultados para Polarization modulation infrared structural absorbance spectroscopy
Resumo:
Infrared spectroscopy provides a valuable tool to investigate the spin-state transition in Fe(II) complexes of the type Fe(Phen)2(NCS)2. With progressive substitution of Fe by Mn, the first-order transition changes over to a second-order transition, with a high residual population of the high-spin state even at very low temperatures
Resumo:
Infrared spectroscopic studies of C70 films show variation in absorbance and linewidth of the bands across the orientational phase transitions around 280 and 340 K. There is some evidence for the coexistence of phases in the 210–270 K region and for the occurrence of another transition below 200 K.
Resumo:
The dideoxygenation reaction of 1,3;4,6-di-O-alkylidene-2,5-di-S-methylthiocarbonyl-D-mannitol derivatives under Barton-McCombie reaction conditions gave the hexahydrodipyranothiophenes 4 and 7 instead of the expected 2,5-dideoxy products. Structural and conformational information on these novel derivatives has been obtained by NMR spectroscopy, single-crystal X-ray crystallography and molecular mechanics calculations.
Resumo:
Multilayer lithium tantalate thin films were deposited on Pt-Si Si(111)/SiO2/TiO2/Pt(111)]substrates by sol-gel process. The films were annealed at different annealing temperatures (300, 450 and 650 degrees C) for 15 min. The films are polycrystalline at 650 degrees C and at other annealing conditions below 650 degrees C the films are in amorphous state. The films were characterized using X-ray diffraction, atomic force microscopy (AFM) and Raman spectroscopy. The AFM of images show the formation of nanograins of uniform size (50 nm) at 650 degrees C. These polycrystalline films exhibit spontaneous polarization of 1.5 mu C/cm(2) at an application of 100 kV/cm. The dielectric constant of multilayer film is very small (6.4 at 10 kHz) as compared to that of single crystal. (C) 2010 Elsevier B.V. All rights reserved.
Resumo:
The Z' = 1 and Z' = 5 structures of quinoxaline are compared. The nature of the intermolecular interactions in the Z' = 5 structure is studied by means of variable-temperature single-crystal X-ray diffraction. The C-H center dot center dot center dot N and pi ... pi it interactions in these structures are of a stabilizing nature. The high Z' structure has the better interactions, whereas the low Z' structure has the better stability. This trade-off is a recurrent theme in molecular crystals and is a manifestation of the distinction between thermodynamically and kinetically favoured crystal forms.
Resumo:
New vibrational Raman features characteristic to the conductive form of polyaniline have been observed with the near-infrared excitation at 1047 nm. Based on an analogy with the resonance Raman spectrum of Michler's ketone in the lowest excited triplet (T-1) state, we consider these features as due to a dynamic structure of a diimino-1,4-phenylene unit in the polyaniline chain exchanging a positive charge very rapidly. This consideration directly leads to a conducting mechanism in which a positive charge migrates from one nitrogen to the other through the conjugated chain of polyaniline.
Resumo:
Polyaniline/ZnFe2O4 nanocomposites were synthesized by a simple and inexpensive one-step in situ polymerization method in the presence of ZnFe2O4 nanoparticles. The structural, morphological, and electrical properties of the samples were characterized by wide angle X-ray diffraction (WAXD), Fourier transform infrared (FTIR) spectroscopy, scanning electron microscopy (SEM), and thermogravimetric analysis (TGA). WAXD and SEM revealed the formation of polyaniline/ZnFe2O4 nanocomposites. Infrared spectroscopy indicated that there was some interaction between the ZnFe2O4 nanoparticles and polyaniline. The dc electrical conductivity measurements were carried in the temperature range of 80 to 300 K. With increase in the doping concentration of ZnFe2O4, the conductivity of the nanocomposites found to be decreasing from 5.15 to 0.92 Scm(-1) and the temperature dependent resistivity follows ln rho(T) similar to T-1/2 behavior. The nanocomposites (80 wt % of ZnFe2O4) show a more negative magnetoresistance compared with that of pure polyaniline (PANI). These results suggest that the interaction between the polymer matrix PANI and zinc nanoparticles take place in these nanocomposites. (C) 2011 Wiley Periodicals, Inc. J Appl Polym Sci 120: 2856-2862, 2011
Resumo:
Cu (0.1 mol%) doped ZnO nanopowders have been successfully synthesized by a wet chemical method at a relatively low temperature (300 degrees C). Powder X-ray diffraction (PXRD) analysis, scanning electron microscopy (SEM), Transmission electron microscopy (TEM), Fourier transformed infrared (FTIR) spectroscopy, UV-Visible spectroscopy, Photoluminescence (PL) and Electron Paramagnetic Resonance (EPR) measurements were used for characterization. PXRD results confirm that the nanopowders exhibit hexagonal wurtzite structure of ZnO without any secondary phase. The particle size of as-formed product has been calculated by Williamson-Hall (W-H) plots and Scherrer's formula is found to be in the range of similar to 40 nm. TEM image confirms the nano size crystalline nature of Cu doped ZnO. SEM micrographs of undoped and Cu doped ZnO show highly porous with large voids. UV-Vis spectrum showed a red shift in the absorption edge in Cu doped ZnO. PL spectra show prominent peaks corresponding to near band edge UV emission and defect related green emission in the visible region at room temperature and their possible mechanisms have been discussed. The EPR spectrum exhibits a broad resonance signal at g similar to 2.049, and two narrow resonances one at g similar to 1.990 and other at g similar to 1.950. The broad resonance signal at g similar to 2.049 is a characteristic of Cu2+ ion whereas the signal at g similar to 1.990 and g similar to 1.950 can be attributed to ionized oxygen vacancies and shallow donors respectively. The spin concentration (N) and paramagnetic susceptibility (X) have been evaluated and discussed. (C) 2011 Elsevier B. V. All rights reserved.
Resumo:
A previous B-11 nuclear magnetic resonance investigation of glasses belonging to the B2S3-Li2S-LiI system had allowed the authors to determine the variation of the number of three and four coordinated boron atoms with composition. These results, in addition to the observation that vitreous B2S3 quite easily forms fibres during casting, have led us to propose structural hypotheses for B2S3 based glasses, which are supported by the present Raman spectroscopy study. For vitreous B2S3 the spectra were accounted for on the basis of the various types of BS3/2 triangles proposed by the model. Molecular orbital considerations allowed us to assign the most significant lines for the binary glasses by assuming that BS3/2 triangles (with or without nonbridging sulphur atoms) and BS4 tetrahedra were present. In the ternary system, lithium iodide has been found to interact slightly on the structural entities, altering their vibrational characteristics without fundamentally modifying their nature.
Resumo:
Anomalous changes in the infrared intensity of the cobalt-oxygen stretching modes in the infrared spectrum of lanthanum cobaltate (LaCoO3) suggest vibronic coupling. This phenomenon has been studied by infrared vibrational spectroscopy both by temperature-induced changes of spin-state occupation and pressure-induced changes of the crystal field splitting 10Dq.
Resumo:
The results of the structural and conformational studies carried out using C-13 CPMAS NMR technique on several glycine and alanine containing peptides in the solid state are reported. The study demonstrates the effects of variations in C-13 chemical shifts due to conformation and hydrogen bonding. The possibility of applying this technique to obtain insight into the conformational characteristics of peptides of unknown structures is discussed.
Resumo:
Poly(alpha-methylstyrene peroxide) has been synthesized and characterized spectroscopically. The H-1 and C-13 NMR spectra are shown to reveal the stereochemical features and the endgroups in the peroxide chain. The preliminary studies on the chain dynamics of the polyperoxide chain has been done by measuring the spin-lattice relaxation times (T-1) of the main chain as well as the side chain carbons. It has been shown from the dependence of the spin-lattice relaxation times that the polyperoxide chain is more flexible compared to the corresponding hydrocarbon-backbone analog.
Resumo:
Site disorder of Co3+ ions in sputtered films of lithium cobaltite has been examined using infrared spectroscopy. Both transmission and reflectance modes have been used to characterize the nature of IR absorption. It is found that Co3+ in the sputtered films occupy two types of octahedral sites that differ in the nature of second-neighbor environment. Li+ ions exhibit two bands, which may arise from tetrahedral and octahedral site occupancies or from the presence of disordered regions in the films. (C) 2002 Elsevier Science (USA).
Resumo:
Low-spin (LS) to intermediate-spin (IS) state transitions in crystals of LnCoO3 (Ln=La, Pr and Nd) have been investigated by variable temperature infrared spectroscopy. The spectra reveal the occurrence of the transition around 120, 220 and 275 K, respectively, in LaCoO3,PrCoO3 and NdCoO3, at which temperatures the intensities of the stretching and the bending modes associated with the LS state decrease, accompanied by an increase in the intensities of the bands due to IS state. The characteristic frequencies of both the spin states decrease with increase in temperature, showing anomalies around the transition.