125 resultados para Josephson-junction
Resumo:
A finite element analysis of laminated shells reinforced with laminated stiffeners is described in this paper. A rectangular laminated anisotropic shallow thin shell finite element of 48 d.o.f. is used in conjunction with a laminated anisotropic curved beam and shell stiffening finite element having 16 d.o.f. Compatibility between the shell and the stiffener is maintained all along their junction line. Some problems of symmetrically stiffened isotropic plates and shells have been solved to evaluate the performance of the present method. Behaviour of an eccentrically stiffened laminated cantilever cylindrical shell has been predicted to show the ability of the present program. General shells amenable to rectangular meshes can also be solved in a similar manner.
Resumo:
This work explores the electrical properties of p-SnS/n-ITO heterojunction at different temperatures. The p-type SnS film was deposited on n-type ITO substrate using the thermal evaporation technique and its junction properties were studied using two probe method. The as-grown p-n junction exhibited weak rectifying behaviour with a low Saturation current of the order of similar to 10(-6) A. While increasing temperature, the saturation current of the junction is increased and however, its series resistance decreased. At all temperatures the junction exhibited three types of transport mechanisms depending on applied bias-voltage. At lower voltages the junction showed nearly ideal diode characteristics. The junction behaviour with respect to bias-voltage and temperature is discussed with the help of existing theories and energy band diagram.
Resumo:
In this paper, for the first time, the effects of energy quantization on single electron transistor (SET) inverter performance are analyzed through analytical modeling and Monte Carlo simulations. It is shown that energy quantization mainly changes the Coulomb blockade region and drain current of SET devices and thus affects the noise margin, power dissipation, and the propagation delay of SET inverter. A new analytical model for the noise margin of SET inverter is proposed which includes the energy quantization effects. Using the noise margin as a metric, the robustness of SET inverter is studied against the effects of energy quantization. A compact expression is developed for a novel parameter quantization threshold which is introduced for the first time in this paper. Quantization threshold explicitly defines the maximum energy quantization that an SET inverter logic circuit can withstand before its noise margin falls below a specified tolerance level. It is found that SET inverter designed with CT:CG=1/3 (where CT and CG are tunnel junction and gate capacitances, respectively) offers maximum robustness against energy quantization.
Resumo:
A theorem termed the Geometrical Continuity Theorem is enunciated and proven. This theorem throws light on the aspects of the continuity of the proportional portion with the base weir portion. These two portions constitute the profile of a proportional weir. A weir of this type with circular bottom is designed. The theorem is used to establish the continuity at the junction of the proportional and the base weir portions of this weir. The coordinates of the weir profile are obtained by numerical methods and are furnished in tabular form for ready use by designers. The discharge passing through the weir is a linear function of the head. The verification of the assumed linear discharge-head relation is furnished for one of the three weirs with which experiments were conducted. The coefficient of discharge for this typical weir is found to be a constant with a value of 0.59.
Resumo:
The V-I characteristic of a p-n junction under breakdown is calculated taking the thermally generated carriers into account. The current density distributions computed under different conditions have been given. The light emission and other characteristics reported by Chiang and Lauritzen and others have been explained.
Resumo:
A super-secondary structural motif comprising two orthogonally oriented beta-strands connected by short linking segments of <5 residues has been identified from a data set of 65 independent protein crystal structures. Of the 42 examples from 14 proteins, a vast majority have only a single residue as the linking element. Analysis of the conformational angles at the junction reveals that the recently described type VIII beta-turn occurs frequently at the connecting hinge, while the type II beta-turn is also fairly common.
Resumo:
Silica segregation at two grain junctions or in amorphous triple junction pockets can influence creep by altering the grain-boundary diffusion coefficient. Although the addition of silica to superplastic yttria-stabilized tetragonal zirconia enhances ductility, differences in reported creep parameters have limited critical identification of rate controlling mechanisms. The present study on a pure 3 mol% yttria-stabilized tetragonal zirconia (3YTZ) and 3YTZ with 0.39 or 3.9 wt% silica involved a detailed characterization of creep over a wide range of experimental conditions and also tracer diffusion measurements. The data broadly show transitions in creep stress exponents from n∼1 to ∼2 to ∼3 with a decrease in the stress. The data at high stresses are consistent with Coble diffusion creep, and creep at lower stresses is attributed to interface-controlled diffusion creep. Measurements indicated that silica does not have any significant influence on grain boundary or lattice diffusion, and this is consistent with the observation that 3YTZ and 3YTZ with 0.39% or 3.9% silica exhibit essentially identical creep behavior in the Coble creep regime. Silica influences the interface control process so that the transitions in stress exponents are pushed to lower stresses with an increase in silica content.
Resumo:
We study the transport properties of the Dirac fermions with a Fermi velocity v(F) on the surface of a topological insulator across a ferromagnetic strip providing an exchange field J over a region of width d. We show that the conductance of such a junction, in the clean limit and at low temperature, changes from oscillatory to a monotonically decreasing function of d beyond a critical J. This leads to the possible realization of a magnetic switch using these junctions. We also study the conductance of these Dirac fermions across a potential barrier of width d and potential V-0 in the presence of such a ferromagnetic strip and show that beyond a critical J, the criteria of conductance maxima changes from chi = eV(0)d/(h) over barv(F) = n pi to chi = (n + 1/2)pi for integer n. We point out that these novel phenomena have no analogs in graphene and suggest experiments which can probe them.
Resumo:
We study power dissipation for systems of multiple quantum wires meeting at a junction, in terms of a current splitting matrix (M) describing the junction. We present a unified framework for studying dissipation for wires with either interacting electrons (i.e., Tomonaga-Luttinger liquid wires with Fermi-liquid leads) or noninteracting electrons. We show that for a given matrix M, the eigenvalues of (MM)-M-T characterize the dissipation, and the eigenvectors identify the combinations of bias voltages which need to be applied to the different wires in order to maximize the dissipation associated with the junction. We use our analysis to propose and study some microscopic models of a dissipative junction which employ the edge states of a quantum Hall liquid. These models realize some specific forms of the M matrix whose entries depends on the tunneling amplitudes between the different edges.
Resumo:
A compact model for noise margin (NM) of single-electron transistor (SET) logic is developed, which is a function of device capacitances and background charge (zeta). Noise margin is, then, used as a metric to evaluate the robustness of SET logic against background charge, temperature, and variation of SET gate and tunnel junction capacitances (CG and CT). It is shown that choosing alpha=CT/CG=1/3 maximizes the NM. An estimate of the maximum tolerable zeta is shown to be equal to plusmn0.03 e. Finally, the effect of mismatch in device parameters on the NM is studied through exhaustive simulations, which indicates that a isin [0.3, 0.4] provides maximum robustness. It is also observed that mismatch can have a significant impact on static power dissipation.
Resumo:
A new model of ignition in an ignitron, based on the electrical breakdown of the junction between the ignitor (semiconductor) and the mercury (metal) is proposed. A method of evaluating some of the ignition characteristics is also developed. The paper gives a critical summary of the various characteristics of the ignition process. The new model is stated and used to explain all the ignition characteristics. The experiments conducted in support of the various aspects of this model are also given.
Resumo:
One of the major limitations to the application of high-resolution biophysical techniques such as X-crystallography and spectroscopic analyses to structure-function studies of Saccharomyces cerevisiae Hop1 protein has been the non-availability of sufficient quantities of functionally active pure protein. This has, indeed, been the case of many proteins, including yeast synaptonemal complex proteins. In this study, we have performed expression screening in Escherichia coli host strains, capable of high-level expression of soluble S. cerevisiae Hop1 protein. A new protocol has been developed for expression and purification of S. cerevisiae Hop1 protein, based on the presence of hexa-histidine tag and double-stranded DNA-Cellulose chromatography. Recombinant S. cerevisiae Hop1 protein was >98% pure and exhibited DNA-binding activity with high-affinity to the Holliday junction. The availability of the recombinant HOP1 expression vector and active Hop1 protein would facilitate structure-function investigations as well as the generation of appropriate truncated and site-directed mutant proteins, respectively. (C) 2010 Elsevier Inc. All rights reserved.
Resumo:
Low-temperature plastic flow in copper was investigated by studying its tensile and creep deformation characteristics. The dependence of the flow stress on temperature and strain rate was used to evaluate the thermal activation energy while the activation area was derived from the change-in-stress creep experiments. A value of 0.6 eV was obtained for the total obstacle energy both in electrolytic and commerical copper. The activation areas in copper of three selected purities fell in the range 1200 to 100 b2. A forest intersection mechanism seems to control the temperature dependent part of the flow stress. The increase in the athermal component of the flow stress with impurity content in copper is attributed to a change in the dislocation density. The investigation also revealed that thermal activation of some attractive junctions also takes place during low-temperature creep. The model of attractive junction formation on a stress decrement during creep, yields a value of 45±10 ergs cm-2 for the stacking fault energy in copper.
Resumo:
Suspensions of lithium stearate in n-heptane are highly unstable, undergoing gelation even at concentrations as low as 1 g./1. The rate of subsidence of these weakly gelled suspensions is decreased at first by the addition of n-alcohols, but passes through a minimum in some cases. The minimum subsidence rate occurs while the adsorption of the alcohol is still below its saturation value. One possible explanation of the effect is that the solvent layer between particles at the junction points in the gel becomes simultaneously more polar, tending toward an increased gel strength, and also thicker, tending toward a decreased gel strength.
Resumo:
Summary form only given. The authors have developed a controllable HTSC (high-temperature superconductor) weak-link fabrication process for producing weak links from the high-temperature superconductor YBa2Cu3O7-x (YBCO), using PrBa2Cu3O7-x (PBCO) as a lattice-matched semiconducting barrier layer. The devices obtained show current-voltage characteristics similar to those observed for low-temperature superconductor/normal-metal/superconductor (SNS) devices. The authors found good scaling of the critical currents Ic with area, A, and scaling of the resistances Rj with 1/A; the typical values of the IcRj product of 3.5 mV are consistent with traditional SNS behavior. The authors observed Shapiro steps in response to 100-GHz millimeter-wave radiation and oscillation of the DC supercurrent in a transverse magnetic field, thus demonstrating that both the AC and DC Josephson effects occur in these devices.