87 resultados para Finite difference time-domain analysis
Resumo:
Terahertz time domain spectroscopy has been used to study low frequency confined acoustic phonons of silver nanoparticles embedded in poly (vinyl alcohol) matrix in the spectral range of 0.1-2.5 THz. The real and imaginary parts of the dielectric function show two bands at 0.60 and 2.12 THz attributed to the spheroidal and toroidal modes of silver nanoparticles, thus demonstrating the usefulness of terahertz time domain spectroscopy as a complementary technique to Raman spectroscopy in characterizing the nanoparticles. (C) 2010 American Institute of Physics. [doi:10.1063/1.3456372]
Resumo:
A simplified two-temperature model is presented for the vibrational energy levels of the N2O and N2 molecules of an N2O-N2-He gasdynamic laser (GDL), and the governing equations for the unsteady flow of the gas mixture in a convergent-divergent contour nozzle are solved using a time-dependent numerical technique. Final steady-state distributions are obtained for vibrational temperatures, population inversion, and the small-signal laser gain along the nozzle. It is demonstrated that, for plenum temperatures lower than 1200 K, an N2O GDL such as the present is more efficient than a CO2 GDL in identical operating conditions
Resumo:
We have measured the frequency-dependent real index of refraction and extinction coefficient (and hence the complex dielectric function) of a free-standing double-walled carbon nanotube film of thickness 200 nm by using terahertz time domain spectroscopy in the frequency range 0.1 to 2.5 THz. The real index of refraction and extinction coefficient have very high values of approximately 52 and 35, respectively, at 0.1 THz, which decrease at higher frequencies. Two low-frequency phonon modes of the carbon nanotubes at 0.45 and 0.75 THz were clearly observed for the first time in the real and imaginary parts of the complex dielectric function along with a broad resonance centred at around 1.45 THz, the latter being similar to that in single-walled carbon nanotubes assigned to electronic excitations. Our experiments bring out a possible application of double-walled carbon nanotube films as a neutral density filter in the THz range.
Resumo:
A new super convergent sandwich beam finite element formulation is presented in this article. This element is a two-nodded, six degrees of freedom (dof) per node (3 dof u(0), w, phi for top and bottom face sheets each), which assumes that all the axial and flexural loads are taken by face sheets, while the core takes only the shear loads. The beam element is formulated based on first-order shear deformation theory for the face sheets and the core displacements are assumed to vary linearly across the thickness. A number of numerical experiments involving static, free vibration, and wave propagation analysis examples are solved with an aim to show the super convergent property of the formulated element. The examples presented in this article consider both metallic and composite face sheets. The formulated element is verified in most cases with the results available in the published literature.
Resumo:
Real-time kinetics of ligand-ligate interaction has predominantly been studied by either fluorescence or surface plasmon resonance based methods. Almost all such studies are based on association between the ligand and the ligate. This paper reports our analysis of dissociation data of monoclonal antibody-antigen (hCG) system using radio-iodinated hCG as a probe and nitrocellulose as a solid support to immobilize mAb. The data was analyzed quantitatively for a one-step and a two-step model. The data fits well into the two-step model. We also found that a fraction of what is bound is non-dissociable (tight-binding portion (TBP)). The TBP was neither an artifact of immobilization nor does it interfere with analysis. It was present when the reaction was carried out in homogeneous solution in liquid phase. The rate constants obtained from the two methods were comparable. The work reported here shows that real-time kinetics of other ligand-ligate interaction can be studied using nitrocellulose as a solid support. (C) 2002 Elsevier Science B.V. All rights reserved.
Resumo:
The absorption and index of refraction of polypyrrole (PPy) and poly-3-methylthiophene (PMeT), from low frequencies up to 4 THz, have been measured by tera-Herz (THz) time-domain spectroscopy. The complex conductance was obtained over this range of frequency. Highly conducting metallic samples follow the Drude model, whereas less conducting ones fit the localization-modified Drude model. The carrier scattering time and mobility in conducting polymers can be directly determined from these measurements.
Resumo:
The horizontal pullout capacity of vertical anchors embedded in sand has been determined by using an upper bound theorem of the limit analysis in combination with finite elements. The numerical results are presented in nondimensional form to determine the pullout resistance for various combinations of embedment ratio of the anchor (H/B), internal friction angle (ϕ) of sand, and the anchor-soil interface friction angle (δ). The pullout resistance increases with increases in the values of embedment ratio, friction angle of sand and anchor-soil interface friction angle. As compared to earlier reported solutions in literature, the present solution provides a better upper bound on the ultimate collapse load.
Resumo:
While absorption and emission spectroscopy have always been used to detect and characterize molecules and molecular complexes, the availability of ultrashort laser pulses and associated computer-aided optical detection techniques allowed study of chemical processes directly in the time domain at unprecedented time scales, through appearance and disappearance of fluorescence from participating chemical species. Application of such techniques to chemical dynamics in liquids, where many processes occur with picosecond and femtosecond time scales lead to the discovery of a host of new phenomena that in turn led to the development of many new theories. Experiment and theory together provided new and valuable insight into many fundamental chemical processes, like isomerization dynamics, electron and proton transfer reactions, vibrational energy and phase relaxation, photosynthesis, to name just a few. In this article, we shall review a few of such discoveries in attempt to provide a glimpse of the fascinating research employing fluorescence spectroscopy that changed the field of chemical dynamics forever.
Resumo:
Cardiac autonomic neuropathy is known to occur in alcoholics but the extent of its subclinical form is not usually recognized, Heart Rate Variability (HRV) analysis can detect subclinical autonomic neuropathy. In this study the HRV parameters were compared in 20 neurologically asymptomatic alcoholics, 20 age-matched normals and 16 depressives. All were males, ECG was recorded in a quiet room for four minutes in supine position. Time and Frequency domain parameters of HRV were computed by a researcher blind to clinical details. Alcoholics had significantly smaller Coefficient of Variation of R-R intervals (CVR-R) on time domain analysis and smaller HF band (0.15-0.5 Hz) power on spectral analysis. The decreased Heart Rate Variability indicates cardiac autonomic dysfunction.
Resumo:
The contemporary methods for source characterization rely mainly on experiments. These methods produce inaccurate results in the low‐frequency band, where the characteristics are all the more important. Moreover, the experimental methods cannot be used at the design stage. Hence, a numerical technique to obtain the source characteristics is desirable. In this paper, the pressure‐time history and the mass‐flux‐time history obtained by means of the time‐domain analysis have been used, along with the two‐load method to compute the source characteristics. Two new computational methods for obtaining the source characteristics have been described. These are much simpler, and computationally more economical than the complete time‐domain simulation, which makes use of the method of characteristics.
Resumo:
In this paper, for the first time, the key design parameters of a shallow trench isolation-based drain-extended MOS transistor are discussed for RF power applications in advanced CMOS technologies. The tradeoff between various dc and RF figures of merit (FoMs) is carefully studied using well-calibrated TCAD simulations. This detailed physical insight is used to optimize the dc and RF behavior, and our work also provides a design window for the improvement of dc as well as RF FoMs, without affecting the breakdown voltage. An improvement of 50% in R-ON and 45% in RF gain is achieved at 1 GHz. Large-signal time-domain analysis is done to explore the output power capability of the device.
Resumo:
The propagation of axial waves in hyperelastic rods is studied using both time and frequency domain finite element models. The nonlinearity is introduced using the Murnaghan strain energy function and the equations governing the dynamics of the rod are derived assuming linear kinematics. In the time domain, the standard Galerkin finite element method, spectral element method, and Taylor-Galerkin finite element method are considered. A frequency domain formulation based on the Fourier spectral method is also developed. It is found that the time domain spectral element method provides the most efficient numerical tool for the problem considered.
Resumo:
A wavelet spectral finite element (WSFE) model is developed for studying transient dynamics and wave propagation in adhesively bonded composite joints. The adherands are formulated as shear deformable beams using the first order shear deformation theory (FSDT) to obtain accurate results for high frequency wave propagation. Equations of motion governing wave motion in the bonded beams are derived using Hamilton's principle. The adhesive layer is modeled as a line of continuously distributed tension/compression and shear springs. Daubechies compactly supported wavelet scaling functions are used to transform the governing partial differential equations from time domain to frequency domain. The dynamic stiffness matrix is derived under the spectral finite element framework relating the nodal forces and displacements in the transformed frequency domain. Time domain results for wave propagation in a lap joint are validated with conventional finite element simulations using Abaqus. Frequency domain spectrum and dispersion relation results are presented and discussed. The developed WSFE model yields efficient and accurate analysis of wave propagation in adhesively-bonded composite joints. (C) 2014 Elsevier Ltd. All rights reserved.