94 resultados para Field Emission


Relevância:

60.00% 60.00%

Publicador:

Resumo:

Asymmetric rolling of commercially pure magnesium was carried out at three different temperatures: room temperature, 200 degrees C and 350 degrees C. Systematic analysis of microstructures, grain size distributions, texture and misorientation distributions were performed using electron backscattered diffraction in a field emission gun scanning electron microscope. The results were compared with conventional (symmetric) rolling carried out under the same conditions of temperature and strain rate. Simulations of deformation texture evolution were performed using the viscoplastic self-consistent polycrystal plasticity model. The main trends of texture evolution are faithfully reproduced by the simulations for the tests at room temperature. The deviations that appear for the textures obtained at high temperature can be explained by the occurrence of dynamic recrystallization. Finally, the mechanisms of texture evolution in magnesium during asymmetric and symmetric rolling are explained with the help of ideal orientations, grain velocity fields and divergence maps displayed in orientation space.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

In this paper, we report the synthesis of barium zirconate, BaZrO3, (BZ) nanotubes fabricated by the modified sol-gel method within the nanochannels of anodic aluminum oxide (AAO) templates. The morphology, structure, and composition of as prepared nanotubes were characterized by means of X-ray diffraction (XRD), field emission scanning electron microscope (FE-SEM), transmission electron microscope (TEM), selected-area electron diffraction ( SAED), high resolution TEM (HRTEM) and energy-dispersive X-ray spectroscopy (EDX). The results of XRD and SAED indicated that postannealed (at 650 degrees C for 1 h) BZ nanotubes (BZNTs) exhibited a polycrystalline cubic perovskite crystal structure. SEM and TEM analysis revealed that BZNTs possessed a uniform length and diameter (similar to 200 nm) and the thickness of the wall of the BZNTs was about 20 nm. Y-junctions, multiple branching and typical T-junctions were also observed in some BZNTs. EDX analysis demonstrated that stoichiometric BaZrO3 was formed. HRTEM image confirmed that the obtained BZNTs were composed of nanoparticles in the range of 5-10 nm. The possible formation mechanism of BZNTs was discussed.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

Fabrication of multilayer ultrathin composite films composed of nanosized titanium dioxide particles (P25, Degussa) and polyelectrolytes (PELs), such as poly(allyl amine hydrochloride) (PAH) and poly(styrene sulfonate sodium salt) (PSS), on glass substrates using the layer-by-layer (LbL) assembly technique and its potentia application for the photodegradation of rhodamine B under ultraviolet (UV) irradiation has been reported. The polyelectrolytes and TiO2 were deposited on glass substrates at pH 2.5 and the growth of the multilayers was studied using UV/vis speccrophotometer. Thicknes measurements of the films showed a linear increase in film thickness with increase in number of bilayers. The surface microstructure of the thin films was characterized by field emission scanning electron microscope. The ability of the catalysts immobilized by this technique was compared with TiO2 films prepared by drop casting and spin coating methods. Comparison has been made in terms of film stability and photodegradation of rhodamine B. Process variables such as the effect of surface area of the multilayers, umber of bilayers, and initial dye concentration on photodegradation of rhodamine B were studied. Degradation efficiency increased with increase in number of catalysts (total surface area) and bilayers. Kinetics analysis indicated that the photodegradation rates follow first order kinetics. Under maximum loading of TiO2, with five catalyst slides having 20 bilayers of polyelectrolyte/TiO2 on each, 100 mL of 10 mg/L dye solution could be degraded completely in 4 h. The same slides could be reused with the same efficiency for several cycles. This study demonstrates that nanoparticles can be used in wastewater treatment using a simple immobilization technique. This makes the process an attractive option for scale up.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

In this paper we discuss a new technique to image the surfaces of metallic substrates using field emission from a pointed array of carbon nanotubes (CNTs). We consider a pointed height distribution of the CNT array under a diode configuration with two side gates maintained at a negative potential to obtain a highly intense beam of electrons localized at the center of the array. The CNT array on a metallic substrate is considered as the cathode and the test substrate as the anode. Scanning the test Substrate with the cathode reveals that the field emission current is highly sensitive to the surface features with nanometer resolution. Surface features of semi-circular, triangular and rectangular geometries (projections and grooves) are considered for simulation. This surface scanning/mapping technique can be applied for surface roughness measurements with nanoscale accuracy. micro/nano damage detection, high precision displacement sensors, vibrometers and accelerometers. among other applications.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

Durability is central to the commercialization of polymer electrolyte fuel cells (PEFCs). The incorporation of TiO2 with platinum (Pt) ameliorates both the stability and catalytic activity of cathodes in relation to pristine Pt cathodes currently being used in PEFCs. PEFC cathodes comprising carbon-supported Pt-TiO2 (Pt-TiO2/C) exhibit higher durability in relation to Pt/C cathodes as evidenced by cell polarization, impedance, and cyclic voltammetry data. The degradation in performance of the Pt-TiO2/C cathodes is 10% after 5000 test cycles as against 28% for Pt/C cathodes. These data are in conformity with the electrochemical surface area and impedance values. Pt-TiO2/C cathodes can withstand even 10,000 test cycles with nominal effect on their performance. X-ray diffraction, transmission electron microscope, and cross-sectional field-emission-scanning electron microscope studies on the catalytic electrodes reflect that incorporating TiO2 with Pt helps in mitigating the aggregation of Pt particles and protects the Nafion membrane against peroxide radicals formed during the cathodic reduction of oxygen. (C) 2010 The Electrochemical Society. [DOI: 10.1149/1.3421970] All rights reserved.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

Germanium nanowires were grown on Au coated Si substrates at 380 degrees C in a high vacuum (5 x 10(-5) Torr) by e-beam evaporation of Germanium (Ge). The morphology observation by a field emission scanning electron microscope (FESEM) shows that the grown nanowires are randomly oriented with an average length and diameter of 600 nm and 120 nm respectively for a deposition time of 60 min. The nanowire growth ratewas measured to be similar to 10 nm/min. Transmission electron microscope (TEM) studies revealed that the Ge nanowires were single crystalline in nature and further energy dispersive X-ray analysis(EDAX) has shown that the tip of the grown nanowires was capped with Au nanoparticles, this shows that the growth of the Ge nanowires occurs by the vapour liquid solid (VLS) mechanism. HRTEM studies on the grown Ge nanowire show that they are single crystalline in nature and the growth direction was identified to be along [110]. (C) 2010 Elsevier B.V. All rights reserved.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

Among the various cathode materials studied for Li-ion batteries over the past many years, spinet LiMn2O4 is found to be one of the most attractive materials. Nanoparticles of the electrode materials sustain high rate capability due to large surface to volume ratio and small diffusion path length. Nanoparticles of spinel LiMn2O4 have been synthesized by microwave hydrothermal technique using prior synthesized amorphous MnO2 and LiOH. The phase and purity of spinel LiMn2O4 are confirmed by powder X-ray diffraction. The morphological studies have been investigated using field emission scanning electron microscopy and high-resolution transmission electron microscopy. The electrochemical performances of the material for Li insertion/extraction are evaluated by cyclic voltammetry, galvanostatic charge-discharge cycling and AC impedance studies. The initial discharge capacity is found to be about 89 mAh g(-1) at current density of 21 mA g(-1). (C) 2010 Elsevier B.V. All rights reserved.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

Grain growth kinetics was studied for commercially pure magnesium subjected to equal channel angular extrusion (ECAE). The specimens were ECAE processed upto 4 passes at 523 K following all the three important routes, namely A, 13, and C. Texture and microstructures of the samples were studied using Electron Back Scattered Diffraction (EBSD) technique in a Field Emission Gun Scanning Electron Microscope (FEG-SEM). It was observed that the grain size significantly reduces after ECAE. ECAE process produces a slightly rotated B and C-2 fiber. Static annealing leads to normal grain growth with unimodal distribution of grains through out the temperature range. Average activation energy for grain growth in the temperature range studied is found to be less than the activation energy for lattice diffusion and grain boundary diffusion of magnesium. No significant change in texture during isochronal annealing for 1 hour i.e., the predominant deformation texture remains same.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

InN/GaN heterostructure based Schottky diodes were fabricated by plasma-assisted molecular beam epitaxy. The temperature dependent electrical transport properties were carried out for InN/GaN heterostructure. The barrier height and the ideality factor of the Schottky diodes were found to be temperature dependent. The temperature dependence of the barrier height indicates that the Schottky barrier height is inhomogeneous in nature at the heterostructure interface. The higher value of the ideality factor and its temperature dependence suggest that the current transport is primarily dominated by thermionic field emission (TFE) other than thermionic emission (TE). The room temperature barrier height obtained by using TE and TFE models were 1.08 and 1.43 eV, respectively. (C) 2011 American Institute of Physics. doi: 10.1063/1.3549685]

Relevância:

60.00% 60.00%

Publicador:

Resumo:

We report the synthesis and structural characterization of 0.65Pb(Mg1/3Nb2/3)O-3-0.35PbTiO(3) (PMN-PT) nanotubes prepared by a novel sal-gel template method. X-ray diffraction (XRD) and selected-area electron diffraction (SAED) investigations demonstrated that the postannealed (650 degrees C for 1 h) PMN-PT nanotubes were polycrystalline with perovskite crystal structure. The field emission scanning electron microscope (FE-SEM) shows that as prepared PMN-PT nanotubes were hollow with diameter to be about 200 nm. High resolution transmission electron microscope (HRTEM) analysis confirmed that the obtained PMN-PT nanotubes made up of nanoparticles (10-20 nm) which were randomly aligned in the nanotubes. Energy-dispersive X-ray spectroscopy (EDX) analysis confirmed the stoichiometric 0.65Pb(Mg1/3Nb2/3)O-3-0.35PbTiO(3). The possible formation mechanism of PMN-PT nanotubes was proposed at the end. (C) 2011 Elsevier B.V. All rights reserved.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

Long-term deterioration in the performance of PEFCs is attributed largely to reduction in active area of the platinum catalyst at cathode, usually caused by carbon-support corrosion. It is found that the use of graphitic carbon as cathode-catalyst support enhances its long-term stability in relation to non-graphitic carbon. This is because graphitic-carbon-supported- Pt (Pt/GrC) cathodes exhibit higher resistance to carbon corrosion in-relation to non-graphitic-carbon-supported- Pt (Pt/Non-GrC) cathodes in PEFCs during accelerated stress test (AST) as evidenced by chronoamperometry and carbon dioxide studies. The corresponding change in electrochemical surface area (ESA), cell performance and charge-transfer resistance are monitored through cyclic voltammetry (CV), cell polarisation and impedance measurements, respectively. The degradation in performance of PEFC with Pt/GrC cathode is found to be around 10% after 70 h of AST as against 77% for Pt/Non-GrC cathode. It is noteworthy that Pt/GrC cathodes can withstand even up to 100 h of AST with nominal effect on their performance. Xray diffraction (XRD), Raman spectroscopy, transmission electron microscopy and cross-sectional field-emission scanning electron microscopy (FE-SEM) studies before and after AST suggest lesser deformation in catalyst layer and catalyst particles for Pt/GrC cathodes in relation to Pt/Non-GrC cathodes, reflecting that graphitic carbon-support resists carbon corrosion and helps mitigating aggregation of Pt-particles.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

Longevity remains as one of the central issues in the successful commercialization of polymer electrolyte membrane fuel cells (PEMFCs) and primarily hinges on the durability of the cathode. Incorporation of gold (Au) to platinum (Pt) is known to ameliorate both the electrocatalytic activity and stability of cathode in relation to pristine Pt-cathodes that are currently being used in PEMFCs. In this study, an accelerated stress test (AST) is conducted to simulate prolonged fuel-cell operating conditions by potential cycling the carbon-supported Pt-Au (Pt-Au/C) cathode. The loss in performance of PEMFC with Pt-Au/C cathode is found to be similar to 10% after 7000 accelerated potential-cycles as against similar to 60% for Pt/C cathode under similar conditions. These data are in conformity with the electrochemical surface-area values. PEMFC with Pt-Au/C cathode can withstand > 10 000 potential cycles with very little effect on its performance. X-ray diffraction and transmission electron microscopy studies on the catalyst before and after AST suggest that incorporating Au with Pt helps mitigate aggregation of Pt particles during prolonged fuel-cell operations while X-ray photoelectron spectroscopy reflects that the metallic nature of Pt is retained in the Pt-Au catalyst during AST in comparison to Pt/C that shows a major portion of Pt to be present as oxidic platinum. Field-emission scanning electron microscopy conducted on the membrane electrode assembly before and after AST suggests that incorporating Au with Pt helps mitigating deformations in the catalyst layer.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

Biphasic calcium phosphates have received considerable attention due to their optimum dissolution rate in the human body after implantation. These materials are composed of hydroxyapatite (HA) and resorbable tricalcium phosphate (TCP). In the present investigation, HA whiskers are reinforced into TCP to enhance the mechanical properties of this biphasic composite. Various amounts (30-50 wt%) HA whiskers are reinforced in TCP matrix. Microstructural characterization has been carried out using field-emission scanning electron microscope. Mechanical properties have been investigated by microindentation in a universal testing machine (UTM). As TCP is resorbable, it will dissolve in body fluid and there is a strong possibility for the faceted HA whiskers to interact with functional groups present in the body fluid surroundings.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

Nanostructured materials have attracted considerable interest in recent years due to their properties which differ strongly from their bulk phase and potential applications in nanoscale electronic and optoelectronic devices. Metal oxide nanostructures can be synthesized by variety of different synthesis techniques developed in recent years such as thermal decomposition, sol-gel technique, chemical coprecipitation, hydrothermal process, solvothermal process, spray pyrolysis, polyol process etc. All the above processes go through a tedious synthesis procedure followed by prolonged heat treatment at elevated temperature and are time consuming. In the present work we describe a rapid microwave irradiation-assisted chemical synthesis technique for the growth of nanoparticles, nanorods, and nanotubes of a variety of metal oxides in the presence of an appropriate surfactant, without the use of any templates The method is simple, inexpensive, and helps one to prepare nanostructures in a very simple way, and in a very short time, measured in minutes. The synthesis procedure employs high quality metalorganic complexes (typically -diketonates) featuring a direct metal-to-oxygen bond in its molecular structure. The complex is dissolved in a suitable solvent, often with a surfactant added, and the solution then subjected to microwave irradiation in a domestic microwave oven operating at 2.45 GHz frequency with power varying from 160-800 W, from a few seconds to a few minutes, leading to the formation of corresponding metal oxides. This method has been used successfully to synthesize nanostructures of a variety of binary and ternary metal oxides such as ZnO, CdO, Fe2O3, CuO, Ga2O3, Gd2O3, ZnFe2O4, etc. There is an observed variation in the morphology of the nanostructures with the change of different parameters such as microwave power, irradiation time, appropriate solvent, surfactant type and concentration. Cationic, anionic, nonionic and polymeric surfactants have been used to generate a variety of nanostructures. Even so, to remove the surfactant, there is either no need of heat treatment or a very brief exposure to heat suffices, to yield highly pure and crystalline oxide materials as prepared. By adducting the metal complexes, the shape of the nanostructures can be controlled further. In this manner, very well formed, single-crystalline, hexagonal nanorods and nanotubes of ZnO have been formed. Adducting the zinc complex leads to the formation of tapered ZnO nanorods with a very fine tip, suitable for electron emission applications. Particle size and their monodispersity can be controlled by a suitable choice of a precursor complex, the surfactant, and its concentration. The resulting metal oxide nanostructures have been characterized by X-ray diffraction, field emission scanning electron microscopy, transmission electron microscopy, FTIR spectroscopy, photoluminescence, and electron emission measurements.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

Protein nanoparticles (NPs) have found significant applications in drug delivery due to their inherent biocompatibility, which is attributed to their natural origin. In this study, bovine serum abumin (BSA) nanoparticles were introduced in multilayer thin film via layer-by-layer self-assembly for localized delivery of the anticancer drug Doxorubicin (Dox). BSA nanoparticles (similar to 100 nm) show a high negative zeta potential in aqueous medium (-55 mV) and form a stable dispersion in water without agglomeration for a long period. Hence, BSA NPs can be assembled on a substrate via layer-by-layer approach using a positively charged polyelectrolyte (chitosan in acidic medium). The protein nature of these BSA nanoparticles ensures the biocompatibility of the film, whereas the availability of functional groups on this protein allows one to tune the property of the self-assembly to have a pH-dependent drug release profile. The growth of multilayer thin film was monitored by UV-visible spectroscopy, and the films were further characterized by atomic force microscopy (AFM) and field emission scanning electron microscopy (FESEM). The drug release kinetics of these BSA nanoparticles and their self-assembled thin film has been compared at a physiological pH of 7.4 and an acidic pH of 6.4.