33 resultados para Electricity Demand, Causality, Cointegration Analysis
Resumo:
In the recent years there has been a considerable increase in demand for the electrical power requirement in our country. Presently the transmission system voltages has increased to 765 kV ac and 800kV dc, keeping in view of the future demand experimentation and simulation studies for 1200 kV ac and 1100kV dc transmission are under progress. In the present study an attempt is made to compute the surface potential, electric field across the string of ceramic disc insulators used for 1200kV ac systems. The studies are carried out under normal, polluted conditions and for the case of insulator string containing faulty discs. A computer code using surface charge simulation method (SCSM) is developed for the present analysis. Also a new technique which enhances the surface potential and electric field strength for the existing ceramic disc insulators is presented.
Resumo:
An action is typically composed of different parts of the object moving in particular sequences. The presence of different motions (represented as a 1D histogram) has been used in the traditional bag-of-words (BoW) approach for recognizing actions. However the interactions among the motions also form a crucial part of an action. Different object-parts have varying degrees of interactions with the other parts during an action cycle. It is these interactions we want to quantify in order to bring in additional information about the actions. In this paper we propose a causality based approach for quantifying the interactions to aid action classification. Granger causality is used to compute the cause and effect relationships for pairs of motion trajectories of a video. A 2D histogram descriptor for the video is constructed using these pairwise measures. Our proposed method of obtaining pairwise measures for videos is also applicable for large datasets. We have conducted experiments on challenging action recognition databases such as HMDB51 and UCF50 and shown that our causality descriptor helps in encoding additional information regarding the actions and performs on par with the state-of-the art approaches. Due to the complementary nature, a further increase in performance can be observed by combining our approach with state-of-the-art approaches.
Resumo:
In this second of the two-part study, the results of the Tank-to-Wheels study reported in the first part are combined with Well-to-Tank results in this paper to provide a comprehensive Well-to-Wheels energy consumption and greenhouse gas emissions evaluation of automotive fuels in India. The results indicate that liquid fuels derived from petroleum have Well-to-Tank efficiencies in the range of 75-85% with liquefied petroleum gas being the most efficient fuel in the Well-to-Tank stage with 85% efficiency. Electricity has the lowest efficiency of 20% which is mainly attributed due to its dependence on coal and 25.4% losses during transmission and distribution. The complete Well-to-Wheels results show diesel vehicles to be the most efficient among all configurations, specifically the diesel-powered split hybrid electric vehicle. Hydrogen engine configurations are the least efficient due to low efficiency of production of hydrogen from natural gas. Hybridizing electric vehicles reduces the Well-to-Wheels greenhouse gas emissions substantially with split hybrid configuration being the most efficient. Electric vehicles do not offer any significant improvement over gasoline-powered configurations; however a shift towards renewable sources for power generation and reduction in losses during transmission and distribution can make it a feasible option in the future. (C) 2015 Elsevier Ltd. All rights reserved.