244 resultados para charge inversion
Resumo:
2 V/40 Ah valve-regulated lead-acid (VRLA) cells have been constructed with negative plates employing carbon black as well as an admixture of carbon black fumed silica as additives in negative active material for partial-state-of-charge (PSoC) applications. Electrical performance of such cells is compared with conventional 2 V/40 Ah VRLA cells for PSoC operation. Active material utilization has been found to be higher for carbon-black fumed-silica mixed negative plates while formation is faster for cells with carbon-black mixed negative plates. Both faradaic efficiency and percentage capacity delivered have been found to be higher for cells with carbon-black + fumed-silica mixed negative plates. However, a high self-discharge rate is observed for cells with carbon-black + fumed-silica mixed negative plates.
Resumo:
A fuzzy logic based centralized control algorithm for irrigation canals is presented. Purpose of the algorithm is to control downstream discharge and water level of pools in the canal, by adjusting discharge release from the upstream end and gates settings. The algorithm is based on the dynamic wave model (Saint-Venant equations) inversion in space, wherein the momentum equation is replaced by a fuzzy rule based model, while retaining the continuity equation in its complete form. The fuzzy rule based model is developed on fuzzification of a new mathematical model for wave velocity, the derivational details of which are given. The advantages of the fuzzy control algorithm, over other conventional control algorithms, are described. It is transparent and intuitive, and no linearizations of the governing equations are involved. Timing of the algorithm and method of computation are explained. It is shown that the tuning is easy and the computations are straightforward. The algorithm provides stable, realistic and robust outputs. The disadvantage of the algorithm is reduced precision in its outputs due to the approximation inherent in the fuzzy logic. Feed back control logic is adopted to eliminate error caused by the system disturbances as well as error caused by the reduced precision in the outputs. The algorithm is tested by applying it to water level control problem in a fictitious canal with a single pool and also in a real canal with a series of pools. It is found that results obtained from the algorithm are comparable to those obtained from conventional control algorithms.
Resumo:
Complexes of I2 with diethyl ether and triethylamine and of Br, with diethyl ether have been investigated in the vapor phase for the first time by employing electron energy loss spectroscopy. Besides the CT bands, blue-shifted vacuum-UV bands of the halogens have been assigned; the amine-I, system appears to exhibit two CT bands,associated with two different excited states of the complex.
Resumo:
In this paper, two new dual-path based area efficient loop filtercircuits are proposed for Charge Pump Phase Locked Loop (CPPLL). The proposed circuits were designed in 0.25 CSM analog process with 1.8V supply. The proposed circuits achievedup to 85% savings in capacitor area. Simulations showed goodmatch of the new circuits with the conventional circuit. Theproposed circuits are particularly useful in applications thatdemand low die area.
Resumo:
Can certain soliton states, with half integral expectation value of charge, be also eigenstates of charge X with half integral eigenvalue? It can be so only with a somewhat sophisticated definition of charge.
Resumo:
The frequency-dependent response of a pinned charge density wave is considered in terms of forced vibration of an oscillator held in an anharmonic well. It is shown that the effective pinning-frequency can be reduced by applying a d.c. field. If a strong a.c. field, superposed on a d.c. field is applied on such a system “jumps” can be observed in the frequency dependent response of the system. The conditions at which these “jumps” occur are investigated with reference to NbSe3. The possibility of observing such phenomena in other systems like superionic conductors, non-linear dielectrics like ferroelectrics is pointed out. The characteristics are expressed in terms of some “scaled variables” — in terms of which the characteristics show a universal behaviour.
Resumo:
A new two-stage state feedback control design approach has been developed to monitor the voltage supplied to magnetorheological (MR) dampers for semi-active vibration control of the benchmark highway bridge. The first stage contains a primary controller, which provides the force required to obtain a desired closed-loop response of the system. In the second stage, an optimal dynamic inversion (ODI) approach has been developed to obtain the amount of voltage to be supplied to each of the MR dampers such that it provides the required force prescribed by the primary controller. ODI is formulated by optimization with dynamic inversion, such that an optimal voltage is supplied to each damper in a set. The proposed control design has been simulated for both phase-I and phase-II study of the recently developed benchmark highway bridge problem. The efficiency of the proposed controller is analyzed in terms of the performance indices defined in the benchmark problem definition. Simulation results demonstrate that the proposed approach generally reduces peak response quantities over those obtained from the sample semi-active controller, although some response quantities have been seen to be increasing. Overall, the proposed control approach is quite competitive as compared with the sample semi-active control approach.
Resumo:
The current voltage characteristics ofo-tolidine-iodine, with stoichiometry 1:1 grown from benzene, have been studied under high pressures upto 6 GPa atT=300 K andT=77 K. The characteristics show a pronounced deviation from ohmicity beyond a certain current for all pressures studied. At room temperature, beyond a threshold field the system switches from a low conductingOFF state to a high conductingON state with σON/σOFF ∼ 103. TheOFF state can be restored by the application of an a.c. pulse of low frequency. The temperature dependence of the two states studied indicates that theOFF state is semiconducting while theON state, beyond a certain applied pressure is metallic. The characteristics atT=77 K do not show any switching.
Resumo:
t is shown that the charge-resonance contribution to binding of the radical dimer cations of aromatic hydrocarbon decreases as the size of the hydrocarbon molecule increases.
Resumo:
The interactions of benzo-15-crown-5, dibenzo-18-crown-6, and dibenzo-24-crown-8 with 2,3-dichloro-5,6-dicyano- 1,4-benzoquinone have been studied in methylene chloride by using spectroscopic methods. These crown ethers from 1:l molecular complexes with the acceptor. The magnitudes of association constants and thermodynamic parameters of complexation are indicative of cooperative interaction of oxygens with the acceptor.
Resumo:
Euler–Bernoulli beams are distributed parameter systems that are governed by a non-linear partial differential equation (PDE) of motion. This paper presents a vibration control approach for such beams that directly utilizes the non-linear PDE of motion, and hence, it is free from approximation errors (such as model reduction, linearization etc.). Two state feedback controllers are presented based on a newly developed optimal dynamic inversion technique which leads to closed-form solutions for the control variable. In one formulation a continuous controller structure is assumed in the spatial domain, whereas in the other approach it is assumed that the control force is applied through a finite number of discrete actuators located at predefined discrete locations in the spatial domain. An implicit finite difference technique with unconditional stability has been used to solve the PDE with control actions. Numerical simulation studies show that the beam vibration can effectively be decreased using either of the two formulations.
Resumo:
A simplified yet analytical approach on few ballistic properties of III-V quantum wire transistor has been presented by considering the band non-parabolicity of the electrons in accordance with Kane's energy band model using the Bohr-Sommerfeld's technique. The confinement of the electrons in the vertical and lateral directions are modeled by an infinite triangular and square well potentials respectively, giving rise to a two dimensional electron confinement. It has been shown that the quantum gate capacitance, the drain currents and the channel conductance in such systems are oscillatory functions of the applied gate and drain voltages at the strong inversion regime. The formation of subbands due to the electrical and structural quantization leads to the discreetness in the characteristics of such 1D ballistic transistors. A comparison has also been sought out between the self-consistent solution of the Poisson's-Schrodinger's equations using numerical techniques and analytical results using Bohr-Sommerfeld's method. The results as derived in this paper for all the energy band models gets simplified to the well known results under certain limiting conditions which forms the mathematical compatibility of our generalized theoretical formalism.
Resumo:
Formal charge distributions in, and the electric dipole moments of, a few simple organogermanium compounds have been evaluated by the method of R. P. Smith et al. [J. Amer. Chem. Soc., 73(1951) 2263]. The difference between the experimental and calculated moments in the case of alkylhalogermanes is explained in terms of the pπ—dπ back bonding effect outweighing the electron releasing effect. In unsaturated compounds, the differences are attributed to possible mesmeric effects involving the expansion of the germanium valence shell.