46 resultados para astro-ph.HE
Resumo:
Classical and non-classical isomers of both neutral and dianionic BC2P2H3 species, which are isolobal to Cp+ and Cp-, are studied at both B3LYP/6-311++G(d,p) and G3B3 levels of theory. The global minimum structure given by B3LYP/6-311+ + G(d,p) for BC2P2H3 is based on a vinylcyclopropenyl-type structure, whereas BC2P2H32- has a planar aromatic cyclopentadienyl-ion-like structure. However, at the G3B3 level, there are three low-energy isomers for BC2P2H3: 1)tricyclopentane, 2) nido and 3) vinylcyclopropenyl-type structures, all within 1.7 kcal mol(-1) of each other. On the contrary, for the dianionic species the cyclic planar structure is still the minimum. In comparison to the isolobal Cp+ and HnCnP5-n+ isomers, BC2P2H3 shows a competition between pi-delocalised vinylcyclopropenyl- and cluster-type structures (nido and tricyclopentane). Substitution of H on C by tBu, and H on B by Ph, in BC2P2H3 increases the energy difference between the low-lying isomers, giving the lowest energy structure as a tricyclopentane type. Similar substitution in BC2P2H32- merely favours different positional isomers of the cyclic planar geometry, as observed in 1) isoelectronic neutral heterodiphospholes EtBu2C2P2 (E=S, Se, Te), 2) monoanionic heterophospholyl rings EtBu2C2P2 (E=P-, As-, Sb-) and 3) polyphospholyl rings anions tBu(5-n)C(n)P(5-n) (n=0-5). The principal factors that affect the stability of three-, four-, and five-membered ring and acyclic geometrical and positional isomers of neutral and dianionic BC2P2H3 isomers appear to be: 1) relative bond strengths, 2) availability of electrons for the empty 2p boron orbital and 3) steric effects of the tBu groups in the HBC(2)P(2)tBu(2) systems.
Resumo:
p-aminobenzoate could be intercalated into the anionic clay, Ni3Zn2(OH)(8)(OAc)(2)center dot 2H(2)O at a high pH (similar to 10). When the pH was reduced to similar to 7 while washing colloidal dispersion due to delamination was observed. The development of partial positive charge on the amine end of the intercalated anion causes repulsion between the layers leading to delamination and colloidal dispersion of monolayers in water. The layers could be restacked from the colloid to form the parent solid either by increasing the pH or by evaporation.
Resumo:
The thermal reactivity of ammonium perchlorate was found to be dependent on the pH of the solution from which it had been crystallised. A nitric acid-crystallised sample reacted faster than an ammonium hydroxide-crystallised one.
Resumo:
The reactions of [MCl2(cod)](M = Pd or Pt, cod = cycloocta-1,5-diene) with RN[P(OPh)2]2[R = Me (L1) or Ph (L2)] afford the chelate complexes [MCl2L1] and [MCl2L2]. The dinuclear palladium(O) complex, [Pd2L13] has been synthesized by starting from [Pd2(dba)3](dba = dibenzylideneacetone). Redox condensation of [Pd2(dba)3] and [PdCl2(PhCN)2] in the presence of the diphosphazane ligands gives the dinuclear palladium(I) complexes [Pd2Cl2L12] and [Pd2Cl2L22]. The structures of the complexes have been deduced from 1H and 31P NMR spectroscopic data. Single-crystal X-ray diffraction studies confirm the structures of [Pd2L13] and [Pd2Cl2L22].
Resumo:
The reaction of fac-[Mo(CO)3(MeCN)3] with the unsymmetrical diphosphazane Ph2PN(iPr)P(Ph)(DMP) (L) gives the complex fac-[Mo(CO)3(MeCN)(L)] (2) in almost quantitative yield. The structure of the complex has been determined by an X-ray diffraction study. The compound reacts with PR3 (where R = Ph, OPh) to give fac-[Mo(CO)3(PR3)(L)] (3a, 4a), which undergoes an intramolecular isomerization to afford mer-[Mo(CO)3(PR3)(L)] (3b, 4b). Synthesis of cis-[Mo(CO)4(L)] (1) and fac-[MO(CO)3L] (2a) and their spectroscopic data are also reported.
Resumo:
The He I photoelectron spectrum of the diethyl ether-ICl complex has been obtained. The oxygen orbitals are shifted to higher binding energies and that of ICl to lower binding energies owing to complex formation. Ab initio molecular orbital (MO) calculations of the complex molecule showed that the bonding is between the sigma-type lone pair of oxygen and the I atom and that the complex has C-2v symmetry. The binding energy of the complex is computed to be 8.06 kcal mol(-1) at the MP2/3-21G* level. The orbital energies obtained from the photoelectron spectra of the complex are compared and assigned with orbital energies obtained by MO calculations. Natural bond orbital analysis (NBO) shows that charge transfer is from the sigma-type oxygen lone pair to the iodine atom and the magnitude of charge transfer is 0.0744 e.
Resumo:
Clay liners have been widely used to contain toxic and hazardous wastes. Clays adsorb the contaminant cations due to their exchange capacity. To improve the performance of the clay liner, fly ash, a waste material arising out of combustion of coal has been studied as a pre-filter material. The results indicate that fly ash has the potential to retain heavy metal ions. This study concerns the retention of zinc by fly ash. The influence of pH on retention as well as leaching characteristics are examined. The results obtained from the retention experiments by permeameter method indicate that fly ash retains the zinc ions through precipitation in the pores as well as onto the surface when the ambient pH value is more than 6.9, and only through adsorption when the pH value is less than 6.9. It has been observed that fly ash did not release the retained zinc ions when the pH value is between 3.5 and 10.0. Hence, the retention of zinc ions by fly ash is likely to be permanent since the pH of most of the landfill leachates are between 3.7 to 8.8.
Resumo:
Unsymmetrical diphosphazanes Ph(2)PN(Pr-i)PYY' [YY' = O2C12H8 (L(1)), O2C20H12 (L(2)); Y = Ph and Y' = OC6H4Br-4 (L(3)), OC(6)H(4)Me-4 (L(4)), OC(6)H(3)Me(2)-3,5 (L(5)), N(2)C(3)HMe(2)-3,5 (L(6))] react with cis-[PdCl2(COD)] (COD = cycloocta-1,5-diene) giving the chelate complexes of the type cis-[PdCl2{eta(2)-Ph(2)PN(Pr-i)PYY'}] [YY' = O2C12H8 (1), O2C20H12 (2), Y = Ph and Y' = OC6H4Br-4 (3), OC(6)H(4)Me-4 (4), OC(6)H(3)Me(2)-3,5 (5), N(2)C(3)HMe(2)-3,5 (6)]. The P-N bond in 3 and 5 undergoes a facile cleavage in methanol solution to give cis-[PdCl2{eta(1)Ph(2)P(OMe)}{eta(1)-PhP(NHPri)(Y')}] [Y' = OC6H4Br-4 (7), OC(6)H(3)Me(2)-3,5 (8)]. Reactions of Pd-2(dba)(3) . CHCl3 (dba = dibenzylideneacetone) with the diphosphazanes Ph(2)PN(Pr-i)PPhY' [Y' = OC(6)H(4)Me-4 (L(4)), N(2)C(3)HMe(2)-3,5 (L(6)), N2C3H3 (L(7))] in the presence of MeI yields cis-[PdI2{eta(2)-Ph(2)PN(Pr-i)PPhMe}] (9); the P-O or P-N(pyrazolyl) bond of the starting ligands is cleaved and a p-C(Me) bond is formed. An analogous oxidative addition reaction in the presence of Ph(2)PN(Pr-i)PPh(2) (L(8)) yields cis-[PdI(Me)(eta(2)-L(8))] (10) and cis-[PdI2(eta 2-L(8))] (11). The structures of 8 and 9 have been determined by X-ray diffraction. Copyright (C) 1996 Elsevier Science Ltd
Resumo:
The influence of pH on the corrosion behaviour of two aluminium-lithium-copper-magnesium-zirconium (8090 and 2091) alloys was studied and compared with a standard aircraft alloy, 2014 (Al-4.4% Cu) and 99.9% pure Al. In constant exposure and potentiodynamic polarization studies conducted in 3.5% NaCl solution having different pH values, all the alloys exhibited high corrosion rates in acidic and alkaline environments, with a minimum in less hostile environments close to neutral pH. The pitting potentials for aluminium-lithium alloys were slightly lower than those for 2014 and pure Al. The effect of pH on the passive current density was also less for aluminium-lithium alloys.
Role of Li+ ions in corrosion behaviour of 8090 Al-Li alloy and aluminium in pH 12 aqueous solutions
Resumo:
The influence of Li+ ions on the corrosion behaviour of the Al-Li alloy 8090-T851 and of commercially pure aluminium in aqueous solutions at pH 12 was studied by weight loss and electrochemical polarisation methods. The inhibiting role of Li+ was concentration dependent, corrosion rate decreasing lineally with log[Li+] in the concentration range 10(-4)-10(-1) mol L(-1). A change from general to pitting corrosion was evident from scanning election microscopy studies. Polarisation studies revealed that Li+ primarily acts as an anodic inhibitor (passivator). Passive film formation and stability also become more feasible with increasing Li+ concentration. Fitting potential was dependent on the Cl- ion concentration in the solution. Both materials were affected similarly by the presence of Li+ ions, the corrosion rate of the alloy being slightly lower. This is attributed to the lithium in the alloy acting as a source of lithium for passive film formation. (C) 1995 The Institute of Materials.
Resumo:
The photocatalytic antibacterial activity of Ag impregnated combustion synthesized TiO(2) (0.25 g/L) was studied against Escherichia coil in presence of UV irradiation. The effect of various parameters, such as anions, canons, hydrogen peroxide and pH, on the photocatalytic inactivation was investigated. The addition of inorganic ions showed a negative effect on inactivation. Among anions, the presence of chloride ions was observed to have a maximum negative effect and reduced the inactivation considerably. Among cations, the bacterial inactivation reduced significantly in the presence of Ca(2+) ions. Hydrogen peroxide addition in combination with Ag/TiO(2) photocatalysis, however, improved the inactivation. Photocatalysis with high concentration of H(2)O(2) yielded complete bacterial inactivation within few minutes. The photocatalytic inactivation of E. coil was not affected by variation in pH. (C) 2011 Elsevier B.V. All rights reserved.
Resumo:
The analysis of propagation of a normal shock wave in CO2‐N2‐He or H2 or H2O system seeded with solid particles is presented. The variation of translational and vibrational temperatures of gas phase and the particle temperatures in the relaxation zone behind the shock front are given in graphical form. These results show that the peak value of population inversion and the width of the inversion zone are highest for He catalyst and lowest for H2O catalyst.
Resumo:
Understanding the dendrimer-drug interaction is of great importance to design and optimize the dendrimer-based drug delivery system. Using atomistic molecular dynamics (MD) simulations, we have analyzed the release pattern of four ligands (two soluble drugs, namely, salicylic acid (Sal), L-alanine (Ala), and two insoluble drugs, namely, phenylbutazone (Pbz) and primidone (Prim)), which were initially encapsulated inside the ethylenediamine (EDA) cored polyamidoamine (PAMAM) dendrimer using the docking method. We have computed the potential of mean force (PMF) variation with generation 5 (G5)-PAMAM dendrimer complexed with drug molecules using umbrella sampling. From our calculated PMF values, we observe that soluble drugs (Sal and Ala) have lower energy barriers than insoluble drugs (Pbz and Prim). The order of ease of release pattern for these drugs from G5 protonated PAMAM dendrimer was found to be Ala > Sal > Prim > Pbz. In the case of insoluble drugs (Prim and Pbz), because of larger size, we observe much nonpolar contribution, and thus, their larger energy barriers can be reasoned to van der Waals contribution. From the hydrogen bonding analysis of the four PAMAM drug complexes under study, we found intermolecular hydrogen bonding to show less significant contribution to the free energy barrier. Another interesting feature appears while calculating the PMF profile of G5NP (nonprotonated)-PAMAM Pbz and G5NP (nonprotonated)-PAMAM-Sal complex. The PMF was found to be less when the drug is bound to nonprotonated dendrimer compared to the protonated dendrimer. Our results suggest that encapsulation of the drug molecule into the host PAMAM dendrimer should be carried out at higher pH values (near pH 10). When such complex enters the human body, the pH is around 7.4 and at that physiological pH, the dendrimer holds the drug tightly. Hence the release of drug can occur at a controlled rate into the bloodstream. Thus, our findings provide a microscopic picture of the encapsulation and controlled release of drugs in the case of dendrimer-based host-guest systems.
Resumo:
During the course of infection, Salmonella has to face several potentially lethal environmental conditions, one such being acidic pH. The ability to sense and respond to the acidic pH is crucial for the survival and replication of Salmonella. The physiological role of one gene (STM1485) involved in this response, which is upregulated inside the host cells (by 90- to 113-fold) is functionally characterized in Salmonella pathogenesis. In vitro, the DSTM1485 neither exhibited any growth defect at pH 4.5 nor any difference in the acid tolerance response. The DSTM1485 was compromised in its capacity to proliferate inside the host cells and complementation with STM1485 gene restored its virulence. We further demonstrate that the surface translocation of Salmonella pathogenicity island-2 (SPI-2) encoded translocon proteins, SseB and SseD were reduced in the DSTM1485. The increase in co-localization of this mutant with lysosomes was also observed. In addition, the DSTM1485 displayed significantly reduced competitive indices (CI) in spleen, liver and mesenteric lymph nodes in murine typhoid model when infected by intra-gastric route. Based on these results, we conclude that the acidic pH induced STM1485 gene is essential for intracellular replication of Salmonella.