34 resultados para algorithmic skeletons
Resumo:
The use of delayed coefficient adaptation in the least mean square (LMS) algorithm has enabled the design of pipelined architectures for real-time transversal adaptive filtering. However, the convergence speed of this delayed LMS (DLMS) algorithm, when compared with that of the standard LMS algorithm, is degraded and worsens with increase in the adaptation delay. Existing pipelined DLMS architectures have large adaptation delay and hence degraded convergence speed. We in this paper, first present a pipelined DLMS architecture with minimal adaptation delay for any given sampling rate. The architecture is synthesized by using a number of function preserving transformations on the signal flow graph representation of the DLMS algorithm. With the use of carry-save arithmetic, the pipelined architecture can support high sampling rates, limited only by the delay of a full adder and a 2-to-1 multiplexer. In the second part of this paper, we extend the synthesis methodology described in the first part, to synthesize pipelined DLMS architectures whose power dissipation meets a specified budget. This low-power architecture exploits the parallelism in the DLMS algorithm to meet the required computational throughput. The architecture exhibits a novel tradeoff between algorithmic performance (convergence speed) and power dissipation. (C) 1999 Elsevier Science B.V. All rights resented.
Resumo:
ASICs offer the best realization of DSP algorithms in terms of performance, but the cost is prohibitive, especially when the volumes involved are low. However, if the architecture synthesis trajectory for such algorithms is such that the target architecture can be identified as an interconnection of elementary parameterized computational structures, then it is possible to attain a close match, both in terms of performance and power with respect to an ASIC, for any algorithmic parameters of the given algorithm. Such an architecture is weakly programmable (configurable) and can be viewed as an application specific integrated processor (ASIP). In this work, we present a methodology to synthesize ASIPs for DSP algorithms. (C) 1999 Elsevier Science B.V. All rights reserved.
Resumo:
This paper looks at the complexity of four different incremental problems. The following are the problems considered: (1) Interval partitioning of a flow graph (2) Breadth first search (BFS) of a directed graph (3) Lexicographic depth first search (DFS) of a directed graph (4) Constructing the postorder listing of the nodes of a binary tree. The last problem arises out of the need for incrementally computing the Sethi-Ullman (SU) ordering [1] of the subtrees of a tree after it has undergone changes of a given type. These problems are among those that claimed our attention in the process of our designing algorithmic techniques for incremental code generation. BFS and DFS have certainly numerous other applications, but as far as our work is concerned, incremental code generation is the common thread linking these problems. The study of the complexity of these problems is done from two different perspectives. In [2] is given the theory of incremental relative lower bounds (IRLB). We use this theory to derive the IRLBs of the first three problems. Then we use the notion of a bounded incremental algorithm [4] to prove the unboundedness of the fourth problem with respect to the locally persistent model of computation. Possibly, the lower bound result for lexicographic DFS is the most interesting. In [5] the author considers lexicographic DFS to be a problem for which the incremental version may require the recomputation of the entire solution from scratch. In that sense, our IRLB result provides further evidence for this possibility with the proviso that the incremental DFS algorithms considered be ones that do not require too much of preprocessing.
Resumo:
A new approach to machine representation and analysis of three-dimensional objects is presented. The representation, based on the notion of "skeleton" of an object leads to a scheme for comparing two given object views for shape relations. The objects are composed of long, thin, rectangular prisms joined at their ends. The input picture to the program is the digitized line drawing portraying the three-dimensional object. To compare two object views, two characteristic vertices called "cardinal point" and "end-cardinal point," occurring consistently at the bends and open ends of the object are detected. The skeletons are then obtained as a connected path passing through these points. The shape relationships between the objects are then obtained from the matching characteristics of their skeletons. The method explores the possibility of a more detailed and finer analysis leading to detection of features like symmetry, asymmetry and other shape properties of an object.
Resumo:
Proving the unsatisfiability of propositional Boolean formulas has applications in a wide range of fields. Minimal Unsatisfiable Sets (MUS) are signatures of the property of unsatisfiability in formulas and our understanding of these signatures can be very helpful in answering various algorithmic and structural questions relating to unsatisfiability. In this paper, we explore some combinatorial properties of MUS and use them to devise a classification scheme for MUS. We also derive bounds on the sizes of MUS in Horn, 2-SAT and 3-SAT formulas.
Resumo:
ASICs offer the best realization of DSP algorithms in terms of performance, but the cost is prohibitive, especially when the volumes involved are low. However, if the architecture synthesis trajectory for such algorithms is such that the target architecture can be identified as an interconnection of elementary parameterized computational structures, then it is possible to attain a close match, both in terms of performance and power with respect to an ASIC, for any algorithmic parameters of the given algorithm. Such an architecture is weakly programmable (configurable) and can be viewed as an application specific instruction-set processor (ASIP). In this work, we present a methodology to synthesize ASIPs for DSP algorithms.
Resumo:
An energy-momentum conserving time integrator coupled with an automatic finite element algorithm is developed to study longitudinal wave propagation in hyperelastic layers. The Murnaghan strain energy function is used to model material nonlinearity and full geometric nonlinearity is considered. An automatic assembly algorithm using algorithmic differentiation is developed within a discrete Hamiltonian framework to directly formulate the finite element matrices without recourse to an explicit derivation of their algebraic form or the governing equations. The algorithm is illustrated with applications to longitudinal wave propagation in a thin hyperelastic layer modeled with a two-mode kinematic model. Solution obtained using a standard nonlinear finite element model with Newmark time stepping is provided for comparison. (C) 2012 Elsevier B.V. All rights reserved.
Resumo:
Berge's elegant dipath partition conjecture from 1982 states that in a dipath partition P of the vertex set of a digraph minimizing , there exists a collection Ck of k disjoint independent sets, where each dipath P?P meets exactly min{|P|, k} of the independent sets in C. This conjecture extends Linial's conjecture, the GreeneKleitman Theorem and Dilworth's Theorem for all digraphs. The conjecture is known to be true for acyclic digraphs. For general digraphs, it is known for k=1 by the GallaiMilgram Theorem, for k?? (where ?is the number of vertices in the longest dipath in the graph), by the GallaiRoy Theorem, and when the optimal path partition P contains only dipaths P with |P|?k. Recently, it was proved (Eur J Combin (2007)) for k=2. There was no proof that covers all the known cases of Berge's conjecture. In this article, we give an algorithmic proof of a stronger version of the conjecture for acyclic digraphs, using network flows, which covers all the known cases, except the case k=2, and the new, unknown case, of k=?-1 for all digraphs. So far, there has been no proof that unified all these cases. This proof gives hope for finding a proof for all k.
Resumo:
Structural Support Vector Machines (SSVMs) have become a popular tool in machine learning for predicting structured objects like parse trees, Part-of-Speech (POS) label sequences and image segments. Various efficient algorithmic techniques have been proposed for training SSVMs for large datasets. The typical SSVM formulation contains a regularizer term and a composite loss term. The loss term is usually composed of the Linear Maximum Error (LME) associated with the training examples. Other alternatives for the loss term are yet to be explored for SSVMs. We formulate a new SSVM with Linear Summed Error (LSE) loss term and propose efficient algorithms to train the new SSVM formulation using primal cutting-plane method and sequential dual coordinate descent method. Numerical experiments on benchmark datasets demonstrate that the sequential dual coordinate descent method is faster than the cutting-plane method and reaches the steady-state generalization performance faster. It is thus a useful alternative for training SSVMs when linear summed error is used.
Resumo:
High-level loop transformations are a key instrument in mapping computational kernels to effectively exploit the resources in modern processor architectures. Nevertheless, selecting required compositions of loop transformations to achieve this remains a significantly challenging task; current compilers may be off by orders of magnitude in performance compared to hand-optimized programs. To address this fundamental challenge, we first present a convex characterization of all distinct, semantics-preserving, multidimensional affine transformations. We then bring together algebraic, algorithmic, and performance analysis results to design a tractable optimization algorithm over this highly expressive space. Our framework has been implemented and validated experimentally on a representative set of benchmarks running on state-of-the-art multi-core platforms.
Resumo:
Recently it has been discovered---contrary to expectations of physicists as well as biologists---that the energy transport during photosynthesis, from the chlorophyll pigment that captures the photon to the reaction centre where glucose is synthesised from carbon dioxide and water, is highly coherent even at ambient temperature and in the cellular environment. This process and the key molecular ingredients that it depends on are described. By looking at the process from the computer science view-point, we can study what has been optimised and how. A spatial search algorithmic model based on robust features of wave dynamics is presented.
Resumo:
We develop several novel signal detection algorithms for two-dimensional intersymbol-interference channels. The contribution of the paper is two-fold: (1) We extend the one-dimensional maximum a-posteriori (MAP) detection algorithm to operate over multiple rows and columns in an iterative manner. We study the performance vs. complexity trade-offs for various algorithmic options ranging from single row/column non-iterative detection to a multi-row/column iterative scheme and analyze the performance of the algorithm. (2) We develop a self-iterating 2-D linear minimum mean-squared based equalizer by extending the 1-D linear equalizer framework, and present an analysis of the algorithm. The iterative multi-row/column detector and the self-iterating equalizer are further connected together within a turbo framework. We analyze the combined 2-D iterative equalization and detection engine through analysis and simulations. The performance of the overall equalizer and detector is near MAP estimate with tractable complexity, and beats the Marrow Wolf detector by about at least 0.8 dB over certain 2-D ISI channels. The coded performance indicates about 8 dB of significant SNR gain over the uncoded 2-D equalizer-detector system.
Resumo:
We consider the problem of devising incentive strategies for viral marketing of a product. In particular, we assume that the seller can influence penetration of the product by offering two incentive programs: a) direct incentives to potential buyers (influence) and b) referral rewards for customers who influence potential buyers to make the purchase (exploit connections). The problem is to determine the optimal timing of these programs over a finite time horizon. In contrast to algorithmic perspective popular in the literature, we take a mean-field approach and formulate the problem as a continuous-time deterministic optimal control problem. We show that the optimal strategy for the seller has a simple structure and can take both forms, namely, influence-and-exploit and exploit-and-influence. We also show that in some cases it may optimal for the seller to deploy incentive programs mostly for low degree nodes. We support our theoretical results through numerical studies and provide practical insights by analyzing various scenarios.
Resumo:
The Lovasz θ function of a graph, is a fundamental tool in combinatorial optimization and approximation algorithms. Computing θ involves solving a SDP and is extremely expensive even for moderately sized graphs. In this paper we establish that the Lovasz θ function is equivalent to a kernel learning problem related to one class SVM. This interesting connection opens up many opportunities bridging graph theoretic algorithms and machine learning. We show that there exist graphs, which we call SVM−θ graphs, on which the Lovasz θ function can be approximated well by a one-class SVM. This leads to a novel use of SVM techniques to solve algorithmic problems in large graphs e.g. identifying a planted clique of size Θ(n√) in a random graph G(n,12). A classic approach for this problem involves computing the θ function, however it is not scalable due to SDP computation. We show that the random graph with a planted clique is an example of SVM−θ graph, and as a consequence a SVM based approach easily identifies the clique in large graphs and is competitive with the state-of-the-art. Further, we introduce the notion of a ''common orthogonal labeling'' which extends the notion of a ''orthogonal labelling of a single graph (used in defining the θ function) to multiple graphs. The problem of finding the optimal common orthogonal labelling is cast as a Multiple Kernel Learning problem and is used to identify a large common dense region in multiple graphs. The proposed algorithm achieves an order of magnitude scalability compared to the state of the art.
Resumo:
The problem of bipartite ranking, where instances are labeled positive or negative and the goal is to learn a scoring function that minimizes the probability of mis-ranking a pair of positive and negative instances (or equivalently, that maximizes the area under the ROC curve), has been widely studied in recent years. A dominant theoretical and algorithmic framework for the problem has been to reduce bipartite ranking to pairwise classification; in particular, it is well known that the bipartite ranking regret can be formulated as a pairwise classification regret, which in turn can be upper bounded using usual regret bounds for classification problems. Recently, Kotlowski et al. (2011) showed regret bounds for bipartite ranking in terms of the regret associated with balanced versions of the standard (non-pairwise) logistic and exponential losses. In this paper, we show that such (non-pairwise) surrogate regret bounds for bipartite ranking can be obtained in terms of a broad class of proper (composite) losses that we term as strongly proper. Our proof technique is much simpler than that of Kotlowski et al. (2011), and relies on properties of proper (composite) losses as elucidated recently by Reid and Williamson (2010, 2011) and others. Our result yields explicit surrogate bounds (with no hidden balancing terms) in terms of a variety of strongly proper losses, including for example logistic, exponential, squared and squared hinge losses as special cases. An important consequence is that standard algorithms minimizing a (non-pairwise) strongly proper loss, such as logistic regression and boosting algorithms (assuming a universal function class and appropriate regularization), are in fact consistent for bipartite ranking; moreover, our results allow us to quantify the bipartite ranking regret in terms of the corresponding surrogate regret. We also obtain tighter surrogate bounds under certain low-noise conditions via a recent result of Clemencon and Robbiano (2011).