107 resultados para Wet deposition


Relevância:

20.00% 20.00%

Publicador:

Resumo:

The growth of strongly oriented or epitaxial thin films of metal oxides generally requires relatively high growth temperatures or infusion of energy to the growth surface through means such as ion bombardment. We have grown high quality epitaxial thin films of Co3O4 on different substrates at a temperature as low as 400 degreesC by low-pressure metalorganic chemical vapour deposition (MOCVD) using cobalt(II) acetylacetonate as the precursor. With oxygen as the reactant gas, polycrystalline Co3O4 films are formed on glass and Si (100) in the temperature range 400-550 degreesC. Under similar conditions of growth. highly oriented films of Co3O4 are formed on SrTiO3 (100) and LaAlO3 (100). The activation energy for the growth of polycrystalline films on glass is significantly higher than that for epitaxial growth on SrTiO3 (100). The film on LaAlO3 (100) grown at 450 degreesC shows a rocking curve FWHM of 1.61 degrees, which reduces to 1.32 degrees when it is annealed in oxygen at 725 degreesC. The film on SrTiO3 (100) has a FWHM of 0.33 degrees (as deposited) and 0.29 (after annealing at 725 degreesC). The phi -scan analysis shows cube-on-cube epitaxy on both these substrates. The quality of epitaxy on SrTiO3 (100) is comparable to the best of the perovskite-based oxide thin films grown at significantly higher temperatures. A plausible mechanism is proposed for the observed low temperature epitaxy. (C) 2001 Published by Elsevier Science B.V.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Summary form only given. The authors have developed a controllable HTSC (high-temperature superconductor) weak-link fabrication process for producing weak links from the high-temperature superconductor YBa2Cu3O7-x (YBCO), using PrBa2Cu3O7-x (PBCO) as a lattice-matched semiconducting barrier layer. The devices obtained show current-voltage characteristics similar to those observed for low-temperature superconductor/normal-metal/superconductor (SNS) devices. The authors found good scaling of the critical currents Ic with area, A, and scaling of the resistances Rj with 1/A; the typical values of the IcRj product of 3.5 mV are consistent with traditional SNS behavior. The authors observed Shapiro steps in response to 100-GHz millimeter-wave radiation and oscillation of the DC supercurrent in a transverse magnetic field, thus demonstrating that both the AC and DC Josephson effects occur in these devices.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

As-deposited high Tc superconducting Y1Ba2Cu3O7−x films with zero resistance temperatures of similar, equals89 K and critical current densities about 0.7×106 A/cm2 at 77 K have been reproducibly fabricated at a substrate holder temperature at 650°C, using pulsed laser deposition, without post-annealing. One key to these results is the injection of gaseous oxygen into laser produced plume just in front of the target. In this way, the correct amount of oxygen is incorporated into the as-grown film so that post-deposition treatment becomes unnecessary. Axial ion channeling in these as-deposit high Tc superconducting films on (100) SrTiO3 and X-ray photoelectron spectroscopy (XPS) on the film surfaces were performed. Angular yield profile near the film surface for Ba, and the surface peak intensity were measured using 3 MeV He ions. For channeling normal to the substrate a minimum yield of 7%, compared to similar, equals3% for single crystals, was obtained. The results of ion channeling and XPS studies indicate that the as-deposited films have good crystallinity as well as toichiometry to within similar, equals1 nm of the film surface. The in-situ growth of such high Tc and Jc films is an important step in the use of the laser deposition technique to fabricate multilayer structures and the surface perfection is of importance in tunneling devices such as Josephson junctions.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Silicon dioxide films are extensively used as protective, barrier and also low index films in multilayer optical devices. In this paper, the optical properties of electron beam evaporated SiO2 films, including absorption in the UV, visible and IR regions, are reported as a function of substrate temperature and post-deposition heat treatment. A comparative study of the optical properties of SiO2 films deposited in neutral and ionized oxygen is also made.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

We report a method for the deposition of thin films and thick coatings of metal oxides through the liquid medium, involving the micro waveirradiation of a solution of a metal-organic complex in a suitable dielectric solvent. The process is a combination of sol-gel and dip-coating methods, wherein coatings can be obtained on nonconducting and semiconducting substrates, within a few minutes. Thin films of nanostructured ZnO (wurtzite) have been obtained on Si(100), glass and polymer substrates, the nanostructure determined by process parameters The coatings are strongly adherent and uniform over 15 mm x 15 mm, the growth rate similar to 0.25 mu m/min Coatings of nanocrystalline Fe2O3 and Ga2O3 have also been obtained The method is scalable to larger substrates, and is promising as a low temperature technique for coating dielectric substrates, including flexible polymers. (C) 2010 Elsevier B.V. All rights reserved.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Polypyrrole (PPy) - multiwalled carbonnanotubes (MWCNT) nanocomposites with various MWCNT loading were prepared by in situ inversion emulsion polymerization technique. High loading of the nano filler were evaluated because of available inherent high interface area for charge separation in the nanocomposites. Solution processing of these conducting polymer nanocomposites is difficult because, most of them are insoluble in organic solvents. Device quality films of these composites were prepared by using pulsed laser deposition techniques (PLD). Comparative study of X-ray photoelectron spectroscopy (XPS) of bulk and film show that there is no chemical modification of polymer on ablation with laser. TEM images indicate PPy layer on MWCNT surface. SEM micrographs indicate that the MWCNT's are distributed throughout the film. It was observed that MWCNT in the composite held together by polymer matrix. Further more MWCNT diameter does not change from bulk to film indicating that the polymer layer remains intact during ablation. Even for very high loadings (80 wt.% of MWCNT's) of nanocomposites device quality films were fabricated, indicating laser ablation is a suitable technique for fabrication of device quality films. Conductivity of both bulk and films were measured using collinear four point probe setup. It was found that overall conductivity increases with increase in MWCNT loading. Comparative study of thickness with conductivity indicates that maximum conductivity was observed around 0.2 mu m. (C) 2010 Elsevier B.V. All rights reserved.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

In order to depict the mechanism of coalescence in fibrous bed coalescers, a model coalescer was fabricated. Both water/oil and oil/water dispersions were run through this model coalescer to check for coalescence on PTFE and glass surfaces. The equilibrium contact angle and the dynamic contact angle of the dispersed drops were measured on these surfaces in the presence of the continuous phase. Coalescence was monitored using a microscope. Based on these observations a mechanism of coalescence in the model coalescer is proposed. Different modes of coalescence are correlated to the equilibrium contact angle and the dynamic contact angle. Deposition of dirt on the coalescing surface is observed to result in change of wettability, leading to redispersion of the already coalesced dispersed phase into larger droplets.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The effect of thermal annealing in the range 300–800 °C on the properties of zirconia films prepared by ion assisted deposition was studied. It was found that at low temperature the cubic phase is formed. This phase is stable up to 700 °C. All the films exhibit a monophasic monoclinic structure at 800 °C. The stress, estimated from X-ray patterns, shows a transition from tensile to compressive with increasing ion fluence. The refractive index and extinction coefficient do not seem to change appreciably up to 700 °C, showing a marked degradation thereafter. Single step annealing to the highest temperature was found to result in better stability than multistep annealing.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Epitaxial LaNiO3(LNO) thin films on LaAlO3(LAO), SrTiO3(STO), and YSZ are grown by pulsed laser deposition method at 350 mTorr oxygen partial pressure and 700 °C substrate temperature. As‐deposited LNO films are metallic down to 10 K. c‐axis oriented YBa2Cu3O7 (YBCO) films were grown on LNO/LAO as well as LNO/STO surfaces without affecting superconducting transition temperature of YBCO. Textured LNO thin films were grown on c‐axis oriented YBCO/STO and YBCO/YSZ . Transport measurements of these bilayer films showed that LNO is a good metallic contact material for YBCO.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Kinetics of random sequential, irreversible multilayer deposition of macromolecules of two different sizes on a one dimensional infinite lattice is analyzed at the mean field level. A formal solution for the corresponding rate equation is obtained. The Jamming limits and the distribution of gaps of exact sizes are discussed. In the absence of screening, the jamming limits are shown to be the same for all the layers. A detailed analysis for the components differing by one monomer unit is presented. The small and large time behaviors and the dependence of the individual jamming limits of the k mers and (k−1) mers on k and the rate parameters are analyzed.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Nanostructured carbon nitride films were prepared by pyrolysis assisted chemical vapour deposition(CVD). A two zone furnace with a temperature profile having a uniform temperature over a length of 20 cm length has been designed and developed. The precursor Azabenzimidazole was taken in a quartz tube and evaporated at 400 degrees C. The dense vapours enter the pyrolysis zone kept at a desired temperature and deposit on the quartz substrates. The FTIR spectrum of the prepared samples shows peaks at 1272 cm(-1) (C-N stretching) and 1600 cm(-1) (C=N) confirms the bonding of nitrogen with carbon. Raman D and G peaks, are observed at 1360 cm(-1) and 1576 cm(-1) respectively. XPS core level spectra of C 1s and N 1s show the formation of pi bonding between carbon and nitrogen atoms. The size of the nano crystals estimated from the SEM images and XRD is similar to 100 nm. In some regions of the sample a maximum of 57 atom % of nitrogen has been observed.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

NiTi thin films deposited by DC magnetron sputtering of an alloy (Ni/Ti:45/55) target at different deposition rates and substrate temperatures were analyzed for their structure and mechanical properties. The crystalline structure, phase-transformation and mechanical response were characterized by X-ray diffraction (XRD), Differential Scanning Calorimetry (DSC) and Nano-indentation techniques, respectively. The films were deposited on silicon substrates maintained at temperatures in the range 300 to 500 degrees C and post-annealed at 600 degrees C for four hours to ensure film crystallinity. Films deposited at 300 degrees C and annealed for 600 degrees C have exhibited crystalline behavior with Austenite phase as the prominent phase. Deposition onto substrates held at higher deposition temperatures (400 and 500 degrees C) resulted in the co-existence of Austenite phase along with Martensite phase. The increase in deposition rates corresponding to increase in cathode current from 250 to 350 mA has also resulted in the appearance of Martensite phase as well as improvement in crystallinity. XRD analysis revealed that the crystalline film structure is strongly influenced by process parameters such as substrate temperature and deposition rate. DSC results indicate that the film deposited at 300 degrees C had its crystallization temperature at 445 degrees C in the first thermal cycle, which is further confirmed by stress temperature response. In the second thermal cycle the Austenite and Martensite transitions were observed at 75 and 60 degrees C respectively. However, the films deposited at 500 degrees C had the Austenite and Martensite transitions at 73 and 58 degrees C, respectively. Elastic modulus and hardness values increased from 93 to 145 GPa and 7.2 to 12.6 GPa, respectively, with increase in deposition rates. These results are explained on the basis of change in film composition and crystallization. (C) 2010 Published by Elsevier Ltd

Relevância:

20.00% 20.00%

Publicador:

Resumo:

A molecule having a ketone group between two thiophene groups was synthesized. Presence of alternating electron donating and accepting moieties gives this material a donor-acceptor-donor (DAD) architecture. PolyDAD was synthesized from DAD monomer by oxidative polymerization. Device quality films of polyDAD were fabricated using pulsed laser deposition technique. X-ray photoelectron spectroscopy (XPS) and fourier transform infrared spectra (FTIR) data of both as synthesized and film indicate the material does not degrade during ablation. Optical band gap was determined to be about 1.45 eV. Four orders of magnitude increase in conductivity was observed from as synthesized to pulsed laser deposition (PLD) fabricated film of polyDAD. Annealing of polyDAD films increase conductivity, indicating better ordering of the molecules upon heating. Rectifying devices were fabricated from polyDAD, and preliminary results are discussed.