401 resultados para Recycling of materials
Resumo:
Chips were produced by orthogonal Cutting of cast pure magnesium billet with three different tool rake angles viz., -15 degrees, -5 degrees and +15 degrees on a lathe. Chip consolidation by solid state recycling technique involved cold compaction followed by hot extrusion. The extruded products were characterized for microstructure and mechanical properties. Chip-consolidated products from -15 degrees rake angle tools showed 19% increase in tensile strength, 60% reduction ingrain size and 12% increase in hardness compared to +15 degrees rake chip-consolidated product indicating better chip bonding and grain refinement. Microstructure of the fracture specimen Supports the abovefinding. On the overall, the present work high lights the importance of tool take angle in determining the quality of the chip-consolidated products. (C) 2009 Elsevier B.V. All rights reserved.
Resumo:
A study of the correlations between material properties and normalized erosion resistance (inverse of erosion rates) of various materials tested in the rotating disk and the flow venturi at various intensities indicates that different individual properties influence different stages of erosion. At high and low intensities of erosion, energy properties predominate the phenomenon, whereas at intermediate intensities strength and acoustic properties become more significant. However, both strength and energy properties are significant in the correlations for the entire spectrum of erosion when extensive cavitation and liquid impingement data from several laboratories involving different intensities and hydrodynamic conditions are considered. The use of true material properties improved the statistical parameters by 3 to 37%, depending on the intensity of erosion. It is possible to evaluate qualitatively the erosion resistances of materials based on the true stress-true strain curves.
Resumo:
Oxide materials like perovskite, zirconolite, hollandite, pyrochlore, NASICON and sphene which are used for nuclear waste immobilization have been prepared by a solution combustion process. The process involves the combustion of stoichiometric amount of corresponding metal nitrates and carbohydrazide/tetraformyl trisazine/diformyl hydrazide at 450 degrees C. The combustion products have been characterized using powder X-ray diffraction, infrared spectroscopy, and Si-29 MAS-NMR. The fine particle nature of the combustion derived powders has been studied using density, particle size, BET surface area measurements and scanning electron microscopy. Sintering of combustion derived powder yields 85-95% dense ceramics in the temperature range 1000 degrees-1300 degrees C.
Resumo:
Fine-particle NASICON materials, Na1+xZr2P3-xSixO12 (where x = 0.0, 0.5, 1.0, 1.5, 2.0 and 2.5), have been prepared by controlled combustion of an aqueous solution containing stoicthiometric amounts of sodium nitrate, zirconyl nitrate, ammonium perchlorate, diammonium hydrogen phosphate, fumed silica and carbonohydrazide. Formation of NASICON has been confirmed by powder XRD, Si-29 NMR and IR spectroscopy. These NASICON powders are fine (average agglomerate size 5-12 mum) with a surface area varying from 8 to 30 m2 g-1. NASICON powders pelletized and sintered at 1100-1200-degrees-C for 5 h achieved 90-95% theoretical density and show fine-grain microstructure. The coefficient of thermal expansion of sintered NASICON compact was measured up to 500-degrees-C and changes f rom -3.4 x 10(-6) to 4.1 x 10(-6) K-1. The conductivity of Sintered Na3Zr2PSi2O12 compact at 300-degrees-C is 0.236 OMEGA-1 cm-1.
Resumo:
Evolution of crystallographic texture during high strain rate deformation in FCC materials with different stacking fault energy (Ni, Cu, and Cu-10Zn alloy) has been studied. The texture evolved in FCC materials at these strain rates show little dependence on the Stacking Fault Energy and the amount of deformation. Copper shows an anomalous behavior that is attributed to the ease of cross slip and continuous Dynamic Recrystallization that are operative under the experimental conditions.
Resumo:
Crystal structures of six binary salts involving aromatic amines as cations and hydrogen tartrates as anions are presented. The materials are 2,6-xylidinium-L-monohydrogen tartrate monohydrate, C12H18O6.5N, P22(1)2(1), a = 7.283(2) Angstrom, b = 17.030(2) Angstrom, c = 22.196(2) Angstrom, Z = 8; 2,6-xylidinium-D-dibenzoyl monohydrogen tartrate, C26H25O8N, P2(1), a = 7.906(1) Angstrom, b = 24.757(1) Angstrom, c = 13.166(1) Angstrom, beta = 105.01(1)degrees, Z = 4; 2,3-xylidinium-D-dibenzoyl monohydrogen tartrate monohydrate, C26H26O8.5N, P2(1), a = 7.837(1) Angstrom, b = 24.488(1) Angstrom, c = 13.763(1) Angstrom, beta = 105.69(1)degrees, Z = 4; 2-toluidinium-D-dibenzoyl monohydrogen tartrate, C25H23O8N, P2(1)2(1)2(1), a = 13.553(2) Angstrom, b = 15.869(3) Angstrom, c = 22.123(2) Angstrom, Z = 8; 3-toluidinium-D-dibenzoyl monohydrogen tartrate (1:1), C25H23O8N, P1, a = 7.916(3) Angstrom, b = 11.467(6) Angstrom, c = 14.203(8) Angstrom, alpha = 96.44(4)degrees, beta = 98.20(5)degrees, = 110.55(5)degrees, Z = 2; 3-toluidinium-D-dibenzoyl tartrate dihydrate (1:2), C32H36O10N, P1, a = 7.828(3) Angstrom, b = 8.233(1) Angstrom, c = 24.888(8) Angstrom, alpha = 93.98 degrees, beta = 94.58(3)degrees, = 89.99(2)degrees, Z = 2. An analysis of the hydrogen-bonding schemes in terms of crystal packing, stoichiometric variations, and substitutional variations in these materials provides insights to design hydrogen-bonded networks directed toward the engineering of crystalline nonlinear optical materials.
Resumo:
Nanometric granular materials represent a new class of materials with significant promise. We shall discuss in this paper two phase granular materials where one of the phases having nanometric dimension is embedded in a matrix of larger dimension. These materials show many interesting properties which include structural, magnetic and transport properties, The phase transformation of the embedded particles shows distinctive behavior and yields new insight. We shall first highlight the strategy of synthesis of these materials through rapid solidification. This will be followed by three examples where the nanoscale dimension of the embedded particles play a unique role. These are melting and solidification of the nanodispersed embedded particles and the superconducting transition. (C) 1997 Elsevier Science S.A.
Resumo:
This paper reports the effect of confining pressure on the mechanical behavior of granular materials from micromechanical considerations starting from the grain scale level, based on the results of numerically simulated tests on disc assemblages using discrete element modeling (DEM). The two macro parameters which are influenced by the increase in confining pressure are stiffness (increases) and volume change (decreases). The lateral strain coefficient (Poisson's ratio) at the beginning of the test is more or less constant. The angle of internal friction slightly decreases with increase in confining pressure. The numerical results of disc assemblages indicate very clearly a non-linear Mohr-Coulomb failure envelope with increase in confining pressure. The increase in average coordination number and accompanying decrease of fabric anisotropy reduce the shear strength at higher confining pressures. Micromechanical explanations of the macroscopic behavior are presented in terms of the force and fabric anisotropy coefficients. (C) 1999 Elsevier Science Ltd. AII rights reserved.
Resumo:
This is a review of the measurement of I If noise in certain classes of materials which have a wide range of potential applications. This includes metal films, semi-conductors, metallic oxides and inhomogeneous systems such as composites. The review contains a basic introduction to this field, the theories and models and follows it up with a discussion on measurement methods. There are discussions on specific examples of the application of noise spectroscopy in the field of materials science. (C) 2002 Elsevier Science Ltd. All rights reserved.
Resumo:
The tendency of granular materials in rapid shear ow to form non-uniform structures is well documented in the literature. Through a linear stability analysis of the solution of continuum equations for rapid shear flow of a uniform granular material, performed by Savage (1992) and others subsequently, it has been shown that an infinite plane shearing motion may be unstable in the Lyapunov sense, provided the mean volume fraction of particles is above a critical value. This instability leads to the formation of alternating layers of high and low particle concentrations oriented parallel to the plane of shear. Computer simulations, on the other hand, reveal that non-uniform structures are possible even when the mean volume fraction of particles is small. In the present study, we have examined the structure of fully developed layered solutions, by making use of numerical continuation techniques and bifurcation theory. It is shown that the continuum equations do predict the existence of layered solutions of high amplitude even when the uniform state is linearly stable. An analysis of the effect of bounding walls on the bifurcation structure reveals that the nature of the wall boundary conditions plays a pivotal role in selecting that branch of non-uniform solutions which emerges as the primary branch. This demonstrates unequivocally that the results on the stability of bounded shear flow of granular materials presented previously by Wang et al. (1996) are, in general, based on erroneous base states.
Resumo:
A methodology for evaluating the reactivity of titanium with mould materials during casting has been developed. Microhardness profiles and analysis of oxygen contamination have provided an index for evaluation of the reactivity of titanium. Microhardness profile delineates two distinct regions, one of which is characterised by a low value of hardness which is invariant with distance. The reaction products are uniformly distributed in the metal in this region. The second is characterised by a sharp decrease in microhardness with distance from the metal-mould interface. It represents a diffusion zone for solutes that dissolve into titanium from the mould. The qualitative profiles for contaminants determined by scanning electron probe microanalyser and secondary ion mass spectroscopy in the as-cast titanium were found to be similar to that of microhardness, implying that microhardness can be considered as an index of the contamination resulting from metal-mould reaction.
Resumo:
Chips produced by turning a commercial grade pure magnesium billet were consolidated by solid state recycling technique of cold compaction followed by hot extrusion. The cold compacted billets were extruded at four different temperatures: 250 degrees C, 300 degrees C, 350 degrees C and 400 degrees C. For the purpose of comparison, cast magnesium (pure) billets were extruded under similar conditions. Extruded products were characterized for damping properties. Damping capacity and dynamic modulus was measured as a function of time and temperature at a fixed frequency of 5 Hz 10 to 14% increase in damping capacity was observed in chip consolidated products compared to reference material. Microstructural changes after the temperature sweep tests were examined. Chip boundaries present in consolidated products were observed to suppress grain coarsening which otherwise was significant in reference material. The present work is significant from the viewpoint of recycling of machined chips and development of sustainable manufacturing processes. (C) 2012 Elsevier B.V. All rights reserved.
Resumo:
A review of various contributions of first principles calculations in the area of hydrogen storage, particularly for the carbon-based sorption materials, is presented. Carbon-based sorption materials are considered as promising hydrogen storage media due to their light weight and large surface area. Depending upon the hybridization state of carbon, these materials can bind the hydrogen via various mechanisms, including physisorption, Kubas and chemical bonding. While attractive binding energy range of Kubas bonding has led to design of several promising storage systems, in reality the experiments remain very few due to materials design challenges that are yet to be overcome. Finally, we will discuss the spillover process, which deals with the catalytic chemisorption of hydrogen, and arguably is the most promising approach for reversibly storing hydrogen under ambient conditions.
Resumo:
Energy research is to a large extent materials research, encompassing the physics and chemistry of materials, including their synthesis, processing toward components and design toward architectures, allowing for their functionality as energy devices, extending toward their operation parameters and environment, including also their degradation, limited life, ultimate failure and potential recycling. In all these stages, X-ray and electron spectroscopy are helpful methods for analysis, characterization and diagnostics for the engineer and for the researcher working in basic science.This paper gives a short overview of experiments with X-ray and electron spectroscopy for solar energy and water splitting materials and addresses also the issue of solar fuel, a relatively new topic in energy research. The featured systems are iron oxide and tungsten oxide as photoanodes, and hydrogenases as molecular systems. We present surface and subsurface studies with ambient pressure XPS and hard X-ray XPS, resonant photoemission, light induced effects in resonant photoemission experiments and a photo-electrochemical in situ/operando NEXAFS experiment in a liquid cell, and nuclear resonant vibrational spectroscopy (NRVS). (C) 2012 Elsevier B.V. All rights reserved.