85 resultados para PLYCYCLIC AROMATIC HYDROCARBONS
Resumo:
A convenient method for the conversion of electron rich benzylic hydrocarbons to carbonyl compounds is reported.
Resumo:
A ternary metal-nucleotide complex, Na2[Cu(5’-IMP)2(im)o,8(H20)l,2(H20)2h]as~ 1be2e.n4 pHr2ep0a,r ed and its structure analyzed by X-ray diffraction (5’-IMP = inosine 5’-monophos hate; im = imidazole). The complex crystallizes in space group C222, with a = 8.733 (4) A, b = 23.213 (5) A, c = 21.489 (6) 1, and Z = 4. The structure was solved by the heavy-atom method and refined by full-matrix least-squares technique on the basis of 2008 observed reflections to a final R value of 0.087. Symmetry-related 5’-IMP anions coordinate in cis geometry through the N(7) atoms of the bases. The other cis positions of the coordination plane are statistically occupied by nitrogen atoms of disordered im groups and water oxygens with occupancies 0.4 and 0.6, respectively. Water oxygens in axial positions complete the octahedral coordination of Cu(I1). The complex is isostructural with C~S-[P~(S’-IMP),(NH~)~a] m”,o del proposed for Pt(I1) binding to DNA. The base binding observed in the present case is different from the typical ”phosphate only” binding shown from earlier studies on metal-nucleotide complexes containing various other ?r-aromatic amines.
Resumo:
Dinitroquinoline-N-oxide, 4-nitroquinoline N-oxide and a series of 4-substituted pyridine N-oxides have been subjected toMINDO/3 treatment in order to understand their antifungal activities. The photoelectron spectra and the nature of the N-oxide bond are discussed.
Resumo:
Cyclohexa-1, 4-dienes with appropriate substituents, obtained by birch reduction of the substituted benzene, react directly with derivatives of propiolic ester or aldchyde to yield aromatic polyketides. The following compounds have been synthesized; mycophenolic acid, nidulol methyl other, the root growth hormone 3, 5-dihydroxy-2-formyl-4-mythyl-benzoic acid, antibiotic DB 2073, the macrocyclic lactones lasiodiplodin and dihydrozearalenone and the biphenyl derivatives alternario and altenusin. Polyketide anthraquinones can be made from naphthoquinone precursors.
Resumo:
The synthesis of 4,4,N,N-tetramethyl-NN-dinitroso-2,2-methylenedianiline (1) by the route p-MeC6H4NH2+ HCHO + OH–(p-MeC6H4NMe)2CH2(7b); (7b)+ acid at 70 °C 4,N-dimethyl-6-(N-methyl-p-toluidinomethyl)aniline (4b); (4b)+ acid at 130 °C 4,4,NN-tetramethyl-2,2-methylenedianiline (3b); (3b)+ HNO2(1), is described. Aspects of the 1H n.m.r. spectra of the above and related compounds are discussed. A crystal-structure analysis of compound (1) shows one of the N-nitroso-groups to be disordered with the endo-form being in preponderance (4 : 1) over the exo-form. The other N-nitroso-group is exclusively exo in the solid state. There is little or no resonance between the benzene ring and the nitroso-group attached to the ring, the two groups being almost perpendicular to each other. In one of the N-nitroso-groups, the nitrogen atom deviates significantly from the plane of the benzene ring to which it is attached. Both amide nitrogen atoms show some pyramidal character.
Resumo:
α-d-Mannopyranosyl units were attached to an aromatic scaffold through disulfide linkages to obtain mono- to trivalent glycosylated ligands for lectin binding studies. Isothermal titration calorimetric (ITC) measurements indicated that binding affinities of these derivatives to Concanavalin A (Con A) were comparable to or slightly higher than that of methyl α-d-mannopyranoside (Ka values in the range of 104 M−1). The stoichiometries of the lectin-ligand complexes were in agreement with the formal valencies (1–3) of the respective ligands indicating cross-linking in interactions with the di- and trivalent derivatives. Multivalency effects could not, however, be observed with the latter. These ligands were shown to bind to the carbohydrate binding site of Con A using saturation transfer difference (STD) NMR competition experiments.
Resumo:
A model (NADH-phenazine methosulfate-O2) formally similar to pyridine nucleotide-dependent flavoprotein hydroxylases catalyzed the hydroxylation of several aromatic compounds. The hydroxylation was maximal at acid pH and was inhibited by ovine Superoxide dismutase, suggesting that perhydroxyl radicals might be intermediates in this process. The stoichiometry of the reaction indicated that a univalent reduction of oxygen was occurring. The correlation between the concentration of semiquinone and hydroxylation, and the inhibition of hydroxylation by ethanol which inhibited semiquinone oxidation, suggested the involvement of phenazine methosulfate-semiquinone. Activation of hydroxylation by Fe3+ and Cu2+ supported the contention that univalently reduced species of oxygen was involved in hydroxylation. Catalase was without effect on the hydroxylation by the model, ruling out H2O2 as an intermediate. A reaction sequence, involving a two-electron reduction of phenazine methosulfate to reduced phenazine methosulfate followed by disproportionation with phenazine methosulfate to generate the semiquinone, was proposed. The semiquinone could donate an electron to O2 to generate O2 which could be subsequently protonated to form the perhydroxyl radical.
Resumo:
The bonding nature of metallocene acetylene complexes Cp2M(eta(2)-H3SiC2SiH3) 1M and CP2M (eta(2)- HC2H) 1M' (M = Ti, Zr, Hf) wits studied by density functional theory method. It is found that this acetylene complex has indeed it metallacyclopropene moiety with two in-plane M-C sigma-bonds and one out-of-plane pi-bond interacting with the metal center, resulting in the formation of it delocalized three-center and two-electron (3c-2e) system. Along with its delocalized out-of-plane bonding, this complex has been characterized its aromatic on the basis of the computed stabilizing energy and negative nucleus-independent chemical shifts (NICS). The aromatic stabilization increases from Ti to Zr and Hf, and this is because of the increased charge separation between the CP2M fragment and the H3SiC2SiH3 (also HC2H) unit. The decrease of the M-C bond length from Zr to Hf is ttributed to the increased s character of both M and C hybridization of the M-C a-bonds.
Resumo:
Aromatic aldehydes and aryl isocyanates do not react at room temperature. However, we have shown for the first time that in the presence of catalytic amounts of group(IV) n-butoxide, they undergo metathesis at room temperature to produce imines with the extrusion of carbon dioxide. The mechanism of action has been investigated by a study of stoichiometric reactions. The insertion of aryl isocyanates into the metal n-butoxide occurs very rapidly. Reaction of the insertion product with the aldehyde is responsible for the metathesis. Among the n-butoxides of group(IV) metals, Ti((OBu)-Bu-n)(4) (8aTi) was found to be more efficient than Zr((OBu)-Bu-n)(4) (8aZr) and Hf((OBu)-Bu-n)(4) (8aHf) in carrying out metathesis. The surprisingly large difference in the metathetic activity of these alkoxides has been probed computationally using model complexes Ti(OMe)(4) (8bTi), Zr(OMe)(4) (8bZr) and Hf(OMe)(4) (8bHf) at the B3LYP/LANL2DZ level of theory. These studies indicate that the insertion product formed by Zr and Hf are extremely stable compared to that formed by Ti. This makes subsequent reaction of Zr and Hf complexes unfavorable.
Resumo:
Six novel gemini cationic lipids based on aromatic backbone, bearing n-C14H29 or n-C16H33 hydrocarbon chains, differing in the length of oxyethylene type spacers −CH2-(CH2-O-CH2)m-CH2− between each ammonium headgroups have been synthesized, where m varies from 1 to 3. Each of these lipids formed stable suspensions in aqueous media. Cationic liposomes were prepared from each of these lipids individually and as mixtures of each cationic lipid and DOPE. These were used as nonviral gene delivery agents. Transfection studies showed that among lipids bearing n-C14H29 chains, the transfection efficacies decreased with the increase in the length of the spacer, whereas in case of lipids bearing n-C16H33 chains, the transfection efficacies increased with the increase in the length of the spacer. Lipid bearing n-C16H33 hydrocarbon chains with a [−(CH2-CH2-O-CH2-CH2-O-CH2-CH2-O-CH2-CH2)−] spacer was found to be a potent gene transfer agent and its transfection was highly serum compatible even in the presence of 50% serum conditions.
Resumo:
A detailed polarographic (a.c. and d.c.) and coulometric investigation of nitrobenzene has been made at various pH values in the presence of different concentrations of ethanol. Below pH 4.7, two waves are apparent but above this pH, the second wave does not appear. Coulometric evidence indicates that the first and second waves correspond to the four-and two-electron processes, respectively. The coulometric method was not applicable in sodium hydroxide and sodium acetate solutions. When the diffusion coefficients (from the diaphragm cell) are used in the Ilkovic equation, no reliable conclusions can be reached for the number of electrons involved in the reduction process in alkaline solutions. The a.c. polarographic method gives evidence for the formation of species such as: C6H5NO2H22+, C6H5NO2− and C6H5NO22−. Analysis of d.c. polarographic data by Delahay's treatment of irreversible waves, indicates that the number of electrons involved in the rate-determining step is 2. In sodium hydroxide solutions, however, the first main wave is split indicating more than one rate-determining step. The results presented in this paper indicate that the first wave in the reduction of nitrobenzene is a four-electron process at all pH values. The second wave, which appears below pH 4.7, corresponds to a two-electron process irrespective of wave heights. The difference in the a.c. polarographic behaviour in acid and alkaline solutions has given evidence for the formation of species like C6H5NO2H2, C6H5NO2−, and C6H5NO22.
Resumo:
The mechanism of hydroxylation reactions catalyzed by m-hydroxybenzoate-4-hydroxylase and anthranilate hydroxylase from Aspergillus niger was investigated using superoxide dismutase from ovine erythrocytes. Inclusion of superoxide dismutase in the assay mixtures of the two enzymes resulted in complete inhibition of the hydroxylation reaction, indicating the possible involvement of superoxide anions (O2−) in these reactions.
Resumo:
The green nitrosobenzene monomer is reduced polarographically to phenylhydroxylamine in the pH range 4—9. Though this reduction is known to be a two-electron process, coulometry invariably gives a lower value of n because of the reaction of unreacted nitrosobenzene and the phenylhydroxylamine formed. The green monomer is attacked by mercury in acid medium. In alkaline medium, the green monomer undergoes a change that follows first-order kinetics with respect to nitrosobenzene. The rate of the transformation depends on the solvent. It decreases in the order acetone > ethanol > dioxan.
Resumo:
The green nitrosobenzene monomer is reduced polarographically to phenylhydroxylamine in the pH range 4—9. Though this reduction is known to be a two-electron process, coulometry invariably gives a lower value of n because of the reaction of unreacted nitrosobenzene and the phenylhydroxylamine formed. The green monomer is attacked by mercury in acid medium. In alkaline medium, the green monomer undergoes a change that follows first-order kinetics with respect to nitrosobenzene. The rate of the transformation depends on the solvent. It decreases in the order acetone > ethanol > dioxan.
Resumo:
Hydroxylation of aromatic compounds was observed in NADH-phenazine methosulfate-O2 model system known to generate superoxide anions (Image ). Addition of superoxide dismutase prepared from ovine erythrocytes to this hydroxylating system resulted in complete inhibition, suggesting an involvement of Image in aromatic hydroxylations.