95 resultados para Delayed-Action Preparations
Resumo:
The antifungal drug, miconazole nitrate, inhibits the growth of several species of Candida. Candida albicans, one of the pathogenic species, was totally inhibited at a concentration of approximately 10 µg/ml. Endogenous respiration was unaffected by the drug at a concentration as high as 100 µg/ml, whereas exogenous respiration was markedly sensitive and inhibited to an extent of 85%. The permeability of the cell membrane was changed as evidenced by the leakage of 260-nm absorbing materials, amino acids, proteins, and inorganic cations. The results we present clearly show that the drug alters the cellular permeability, and thus the exogenous respiration becomes sensitive to the drug.
Resumo:
n recent years, self-assembly has emerged as a powerful tool for the construction of functional nanostructures. Myriad applications of these nanoscale architectures, especially the supramolecular gels derived from low molecular mass compounds, in fields such as optoelectronics, light harvesting, organic–inorganic hybrid materials, tissue engineering and regenerative medicine are being envisaged. This review attempts to present a succinct overview of the current state of research on functional nano-scale systems—the design, synthesis and applications of self-assembled nanomaterials engineered to carry out precise functions, with an emphasis on supramolecular gel phase materials.
Resumo:
1-Acyl-2-succinyl glycero-3-phosphorylcholine (GPC) was synthesized and its properties described. Although 1-acyl-2-succinyl GPC is a good substrate for succinate dehydrogenase, experiments on the incorporation of [2,3-14C]succinate into mitochondrial lipids gave no evidence to indicate that it is an intermediate in the enzymic oxidation of succinate to fumarate, as has been suggested earlier.
Resumo:
The binding of chromomycin A3, an antitumour antibiotic, to various DNA and chromatin isolated from mouse and rat liver, mouse fibrosarcoma and Yoshida ascites sarcoma cells was studied spectrophotometrically at 29°C in 10−2 M Tris-HCl buffer, pH 8.0, containing small amounts of MgCl2 (4.5 · 10−5−25 · 10−5 M). An isobestic point at 415 nm was observed when chromomycin A3 was gradually titrated with Image and its spectrum shifted towards higher wavelength. The rates and extent of these spectral changes were found to be dependent on the concentration of Mg2+. The change in absorbance at 440 nm was used to calculate apparent binding constant (Ka p M−1) and sites per nucleotide (n) from Scatchard plots for various DNA and chromatins. As expected, values of n for chromatin (0.06–0.10) were found to be lower than that found for corresponding DNA (0.10–0.15). Apparently no such correlation exists between binding constants (Ka p M−1 · 10−4) of DNA (6.4–11.2) and of chromatin (3.1–8.3), but Ka p M−1 of chromatin isolated from mouse fibrosarcoma and Yoshida ascites sarcoma are 1.5–3 times higher than that found for mouse and rat liver chromatin. These differences may be taken to indicate structural difference in nucleoprotein complexes caused by neoplasia. The relevance of this finding to tumour suppressive action of chromomycin A3 is discussed.
Resumo:
Induction of hepatic tryptophan-2,3-dioxygenase in rats by cortisol or corticosterone was inhibited on treatment with norepinephrine. The I-adrenergic blockers showed a small potentiating effect of the norepinephrine-mediated inhibition. The I-adrenergic blockers significantly reversed this inhibition, suggesting that norepinephrine acts Image the I-receptor in inhibition of the cortisol-mediated induction of this enzyme.
Resumo:
A purified antitumor protein from the proteinaceous crystal of Bacillus thuringiensis subsp. thuringiensis inhibits the growth of Yoshida ascites sarcoma both in vivo and in vitro. Exogenous respiration of the tumor cells was unaffected by the protein at a concentration as high as 500 µg/ml. The antitumor protein inhibits the uptake and incorporation of labeled precursors into macromolecules. However, the ratio of incorporation over uptake is not affected by the protein. Further, the protein brings about the leakage of 260-nm-absorbing material, proteins, and 32P-labeled cellular constituents from the Yoshida ascites sarcoma cells. The results show that the action of the antitumor protein appears to alter the cellular permeability of the tumor cells.
Resumo:
In the case of reinforced concrete slabs fixed at the boundaries, considerable enhancement in the load carrying capacity takes place due to compressive membrane action. In this paper a method is presented to analyse the effects of membrane action in fixed orthotropic circular slabs, carrying uniformly distributed loads. Depending on the radial moment capacity being greater or less than the circumferential moment capacity, two cases of orthotropy have been considered. Numerical results are worked out for certain assumed physical parameters and for different coefficients of orthotropy. Variations of load and bending moments with the central deflection are presented.
Resumo:
δ-Aminolevulinate (ALA) dehydratase, the second and rate limiting enzyme of the heme biosynthetic pathway in the mold Neurospora crassa is induced maximally in 30 min by the addition of iron to iron-deficient cultures. The induction of the enzyme is blocked by cycloheximide, protoporphyrin, 8-azaguanine and cordycepin. Iron also brings about an increase in poly(A)-containing RNA synthesis under conditions of induction. The iron dependent increase in poly(A)-containing RNA synthesis is blocked by protoporphyrin. It is suggested that at the time intervals examined, bulk of the messenger RNA synthesized in response to iron addition represents the messenger for ALA dehydratase.
Resumo:
The density of states n(E) is calculated for a bound system whose classical motion is integrable, starting from an expression in terms of the trace of the time-dependent Green function. The novel feature is the use of action-angle variables. This has the advantages that the trace operation reduces to a trivial multiplication and the dependence of n(E) on all classical closed orbits with different topologies appears naturally. The method is contrasted with another, not applicable to integrable systems except in special cases, in which quantization arises from a single closed orbit which is assumed isolated and the trace taken by the method of stationary phase.
Resumo:
The effect of selenious acid as an addition agent in the electrodeposition of manganese was studied by analysing the current-potential curves for manganese deposition. The mechanism of action of this addition agent was found to be essentially similar to that proposed for sulphur dioxide, namely to affect the manganese deposition indirectly by influencing the hydrogen evolution reaction which is a parallel reaction at the electrode surface.
Resumo:
Learning automata are adaptive decision making devices that are found useful in a variety of machine learning and pattern recognition applications. Although most learning automata methods deal with the case of finitely many actions for the automaton, there are also models of continuous-action-set learning automata (CALA). A team of such CALA can be useful in stochastic optimization problems where one has access only to noise-corrupted values of the objective function. In this paper, we present a novel formulation for noise-tolerant learning of linear classifiers using a CALA team. We consider the general case of nonuniform noise, where the probability that the class label of an example is wrong may be a function of the feature vector of the example. The objective is to learn the underlying separating hyperplane given only such noisy examples. We present an algorithm employing a team of CALA and prove, under some conditions on the class conditional densities, that the algorithm achieves noise-tolerant learning as long as the probability of wrong label for any example is less than 0.5. We also present some empirical results to illustrate the effectiveness of the algorithm.
Resumo:
Neutral and cationic organometallic ruthenium(II) piano stool complexes of the type [(eta(6)-cymene)R-uCl(X)(Y)] (complexes R1-R8) has been synthesized and characterized. In cationic complexes, X, Y is either a eta(2) phosphorus ligand such as 1,1-bis(diphenylphosphino)methane (DPPM) and 1,2-bis(diphenylphosphino)ethane (DPPE) or partially oxidized ligands such as 1,2-bis(diphenylphosphino)methane monooxide (DPPMO) and 1,2-bis(diphenylphosphino)ethane monooxide (DPPEO) which are strong hydrogen bond acceptors. In neutral complexes. X is chloride and Y is a monodentate phosphorous donor. Complexes with DPPM and DPPMO ligands ([(eta(6)-cymene)Ru(eta(2)-DPPM)Cl]PF6 (R2), [(eta(6)-cymene)Ru(eta(2)-DPPMO)Cl]PF6 (R3), [(eta(6)-cymene)Ru(eta(1)-DPPM)Cl-2] (R5) and [(eta(6)-cymene)Ru(eta(1)-DPPMO)Cl-2] (R6) show good cytotoxicity. Growth inhibition study of several human cancer cell lines by these complexes has been carried out. Mechanistic studies for R5 and R6 show that inhibition of cancer cell growth involves both cell cycle arrest and apoptosis induction. Using an apoptosis PCR array, we identified the sets of antiapoptotic genes that were down regulated and pro-apoptotic genes that were up regulated. These complexes were also found to be potent metastasis inhibitors as they prevented cell invasion through matrigel. The complexes were shown to bind DNA in a non intercalative fashion and cause unwinding of plasmid DNA in cell-free medium by competitive ethidium bromide binding, viscosity measurements, thermal denaturation and gel mobility shift assays.
Resumo:
The early stages of plasticity in KBr single crystals have been studied by means of nano-meter-scale indentation in complementary experiments using both a nanoindenter and an atomic force microscope. Nanoindentafion experiments precisely correlate indentation depth and forces, while force microscopy provides high-resolution force measurements and images of the surface revealing dislocation activity. The two methods provide very similar results for the onset of plasticity in KBr. Upon loading we observe yield of the surface in atomic layer units which we attribute to the nucleation of single dislocations. Unloading is accompanied by plastic recovery as evident from a non-linear force distance unloading curve and delayed discrete plasticity events.
Resumo:
Evidence for the generalized anomeric effect (GAE) in the N-acyl-1,3-thiazolidines, an important structural motif in the penicillins, was sought in the crystal structures of N-(4-nitrobenzoyl)-1,3-thiazolidine and its (2:1) complex with mercuric chloride, N-acetyl-2-phenyl-1,3-thiazolidine, and the (2:1) complex of N-benzoyl-1,3-thiazolidine with mercuric bromide. An inverse relationship was generally observed between the. C-2-N and C-2-S bond lengths of the thiazolidine ring, supporting the existence of the GAE. (Maximal bond length changes were similar to 0.04 angstrom for C-2-N-3, S-1-C-2, and similar to 0.08 angstrom for N-3-C-6.) Comparison with N-acylpyrrolidines and tetrahydrothiophenes indicates that both the nitrogen-to-sulphur and sulphur-to-nitrogen GAE's operate simultaneously in the 1,3-thiazolidines, the former being dominant. (This is analogous to the normal and exo-anomeric effects in pyranoses, and also leads to an interesting application of Baldwin's rules.) The nitrogen-to-sulphur GAE is generally enhanced in the mercury(II) complexes (presumably via coordination at the sulphur); a 'competition' between the GAE and the amide resonance of the N-acyl moiety is apparent. There is evidence for a 'push-pull' charge transfer between the thiazolidine moieties in the mercury(II) complexes, and for a 'back-donation' of charge from the bromine atoms to the thiazolidine moieties in the HgBr2 complex. (The sulphur atom appears to be sp(2) hybridised in the mercury(II) complexes, possibly for stereoelectronic reasons.) These results are apparently relevant to the mode of action of the penicillins. (c) 2006 Elsevier B.V. All rights reserved.
Resumo:
Peptidyl-tRNA hydrolase cleaves the ester bond between tRNA and the attached peptide in peptidyl-tRNA in order to avoid the toxicity resulting from its accumulation and to free the tRNA available for further rounds in protein synthesis. The structure of the enzyme from Mycobacteritan tuberculosis has been determined in three crystal forms. This structure and the structure of the enzyme frorn Escherichia coli in its crystal differ substantially on account of the binding of the C terminus of the E. coli enzyme to the peptide-binding site of a neighboring molecule in the crystal. A detailed examination of this difference led to an elucidation of the plasticity of the binding site of the enzyme. The peptide-binding site of the enzyme is a cleft between the body, of the molecule and a polypepticle Y stretch involving a loop and a helix. This stretch is in the open conformation when the enzyme is in the free state as in the crystals of M. tuberculosis peptidyl-tRNA hydrolase. Furthermore, there is no physical continuity between the tRNA and the peptide-binding sites. The molecule in the E. coli crystal mimics the peptide-bound enzyme molecule. The peptide stretch referred to earlier now closes on the bound peptide. Concurrently, a channel connecting the tRNA and the peptide-binding site opens primarily through the concerted movement of two residues. Thus, the crystal structure of M. tuberculosis peptidyl-tRNA hydrolase when compared with the crystal structure of the E. coli enzyme, leads to a model of structural changes associated with enzyme action on the basis of the plasticity of the molecule. (c) 2007 Elsevier Ltd. All rights reserved.