74 resultados para Batch process
Resumo:
The precipitation processes in dilute nitrogen alloys of titanium have been examined in detail by conventional transmission electron microscopy (CTEM) and high-resolution electron microscopy (HREM). The alloy Ti-2 at. pct N on quenching from its high-temperature beta phase field has been found to undergo early stages of decomposition. The supersaturated solid solution (alpha''-hcp) on decomposition gives rise to an intimately mixed, irresolvable product microstructure. The associated strong tweed contrast presents difficulties in understanding the characteristic features of the process. Therefore, HREM has been carried out with a view to getting a clear picture of the decomposition process. Studies on the quenched samples of the alloy suggest the formation of solute-rich zones of a few atom layers thick, randomly distributed throughout the matrix. On aging, these zones grow to a size beyond which the precipitate/matrix interfaces appear to become incoherent and the alpha' (tetragonal) product phase is seen distinctly. The structural details, the crystallography of the precipitation process, and the sequence of precipitation reaction in the system are illustrated.
Resumo:
There are essentially two different phenomenological models available to describe the interdiffusion process in binary systems in the olid state. The first of these, which is used more frequently, is based on the theory of flux partitioning. The second model, developed much more recently, uses the theory of dissociation and reaction. Although the theory of flux partitioning has been widely used, we found that this theory does not account for the mobility of both species and therefore is not suitable for use in most interdiffusion systems. We have first modified this theory to take into account the mobility of both species and then further extended it to develop relations or the integrated diffusion coefficient and the ratio of diffusivities of the species. The versatility of these two different models is examined in the Co-Si system with respect to different end-member compositions. From our analysis, we found that the applicability of the theory of flux partitioning is rather limited but the theory of dissociation and reaction can be used in any binary system.
Resumo:
A method has been developed for the removal of chromium using ferrous sulphide generated in situ. The effects of experimental parameters such as pH, reagent dosages, interference from cations and chelating agents have been investigated. Under optimum conditions, removal efficiencies of 99 and 97% for synthetic and industrial samples have been obtained. The method offers all the advantages of sulphide precipitation process and can be adopted easily for industrial effluents.
Resumo:
A numerical model of the entire casting process starting from the mould filling stage to complete solidification is presented. The model takes into consideration any phase change taking place during the filling process. A volume of fluid method is used for tracking the metal–air interface during filling and an enthalpy based macro-scale solidification model is used for the phase change process. The model is demonstrated for the case of filling and solidification of Pb–15 wt%Sn alloy in a side-cooled two-dimensional rectangular cavity, and the resulting evolution of a mushy region and macrosegregation are studied. The effects of process parameters related to filling, namely degree of melt superheat and filling velocity on macrosegregation in the cavity, are also investigated. Results show significant differences in the progress of the mushy zone and macrosegregation pattern between this analysis and conventional analysis without the filling effect.
Resumo:
Boron carbide is produced in a heat resistance furnace using boric oxide and petroleum coke as the raw materials. The product yield is very low. Heat transfer plays an important role in the formation of boron carbide. Temperature at the core reaches up to 2600 K. No experimental study is available in the open literature for this high temperature process particularly in terms of temperature measurement and heat transfer. Therefore, a laboratory scale hot model of the process has been setup to measure the temperatures in harsh conditions at different locations in the furnace using various temperature measurement devices such as pyrometer and various types of thermocouple. Particular attention was paid towards the accuracy and reliability of the measured data. The recorded data were analysed to understand the heat transfer process inside the reactor and the effect of it on the formation of boron carbide.
Resumo:
Abstract is not available.
Resumo:
Gaussian processes (GPs) are promising Bayesian methods for classification and regression problems. Design of a GP classifier and making predictions using it is, however, computationally demanding, especially when the training set size is large. Sparse GP classifiers are known to overcome this limitation. In this letter, we propose and study a validation-based method for sparse GP classifier design. The proposed method uses a negative log predictive (NLP) loss measure, which is easy to compute for GP models. We use this measure for both basis vector selection and hyperparameter adaptation. The experimental results on several real-world benchmark data sets show better orcomparable generalization performance over existing methods.
Resumo:
Wilkinson complex, insolubilized by anchoring to polymeric Amberlite beads, had been used for the liquid-phase catalytic oxidation of styrene to benzaldehyde and formaldehyde in toluene medium. Styrene conversion was followed by measuring the oxygen volume in contact with the reaction mixture in a specially designed closed batch apparatus. Styrene conversion depended upon catalyst loading and distribution inside the porous beads, while temperature had little effect on it. The internal diffusional effects on the conversion process have been taken into consideration by a mathematical model which allowed calculation of effectiveness factors for various catalyst loadings and corresponding catalyst distributions. The influence of external diffusion was separately determined by plotting initial rate versus catalyst loading. The proposed method can be readily extended to immobilized enzymes in porous matrices.
Resumo:
Wilkinson complex, insolubilized by anchoring to polymeric Amberlite beads, had been used for the liquid-phase catalytic oxidation of styrene to benzaldehyde and formaldehyde in toluene medium. Styrene conversion was followed by measuring the oxygen volume in contact with the reaction mixture in a specially designed closed batch apparatus. Styrene conversion depended upon catalyst loading and distribution inside the porous beads, while temperature had little effect on it. The internal diffusional effects on the conversion process have been taken into onsideration by a mathematical model which allowed calculation of effectiveness factors for various catalyst loadings and corresponding catalyst distributions. The influence of external diffusion was separately determined by plotting initial rate versus catalyst loading. The proposed method can be readily extended to immobilized enzymes in porous matrices.
Resumo:
The perturbation treatment previously given is extended to explain the process of hydrogen abstraction from the various hydrogen donor molecules by the triplet nπ* state of ketones or the ground state of the alkyl or alkoxy radical. The results suggest that, as the ionization energy of the donor bonds is decreased, the reaction is accelerated and it is not influenced by the bond strength of the donor bonds. The activation barrier in such reactions arises from a weakening of the charge resonance term as the ionization energy of the donor bond increases.
Resumo:
Synthesis of fine particle α-alumina and related oxide materials such as MgAl2O4, CaAl2O4, Y3Al5O12 (YAG), Image , β′-alumina, LaAlO3 and ruby powder (Image ) has been achieved at low temperatures (500°C) by the combustion of corresponding metal nitrate-urea mixtures. Solid combustion products have been identified by their characteristic X-ray diffraction patterns. The fine particle nature of α-alumina and related oxide materials has been investigated using SEM, TEM, particle size analysis and surface area measurements.
Resumo:
Triglycine selenate (TGSe) is isomorphous with Triglycine sulphate and is ferroelectric below 22°C. It is interesting to study the switching process in TGSe in the ferro-state with a view to comparing the results with TSG. The switching process was studied by applying electrical square pulses to produce fields up to 5 kV/cm on the sample, and measuring the parameters characterizing the transient current flowing in the sample, according to the Merz method. The temperature range in which the process was studied was 15°C to -20°C. The results were analysed by applying the Pulvari-Kuebler theory and the parameters α the activation field and µ the mobility of the domains were evaluated. It is found that µ varies with temperature in TGSe in a manner similar to TGS. µ is lesser for TGSe than for TGS for the same shift of temperature from Tc. The switching behaviour of γ-irradiated TGSe is qualitatively similar to that of unirradiated crystal eventhougth the process gets slowed down as a result of irradiation.
Resumo:
Abstract is not available.
Resumo:
Ca2+ ions are necessary for the successful propagation of mycobacteriophage I3. An assay for the phage DNA release in the presence of an isolated cell wall preparation from the host was established, and in this system Ca2+ ions also stimulated the release of DNA. The inhibition of phage DNA injection caused by Tween 80 (polyoxyethylene sorbitan monooleate), a nonionic detergent routinely used in mycobacterial cultures, was reversed by Ca2+. The presence of a phage-associated ATP-hydrolyzing activity was demonstrated. This enzyme was stimulated by Ca2+ ions and inhibited by Tween 80. From this and the behavior of the two agents at the level of DNA injection, as well as the fact that phage I3 has a contractile tail structure, we conclude that the phage-associated ATPase is involved in the DNA injection process.
Resumo:
The perturbation treatment previously given is extended to explain the process of hydrogen abstraction from the various hydrogen donor molecules by the triplet nπ* state of ketones or the ground state of the alkyl or alkoxy radical. The results suggest that, as the ionization energy of the donor bonds is decreased, the reaction is accelerated and it is not influenced by the bond strength of the donor bonds. The activation barrier in such reactions arises from a weakening of the charge resonance term as the ionization energy of the donor bond increases.