456 resultados para Optical fabrication
Resumo:
We briefly review the growth and structural properties of View the MathML source bulk single crystals and View the MathML source epitaxial films grown on semi-insulating GaAs substrates. Temperature-dependent transport measurements on these samples are then correlated with the information obtained from structural (XRD, TEM, SEM) and optical (FTIR absorption) investigations. The temperature dependence of mobility and the Hall coefficient are theoretically modelled by exactly solving the linearized Boltzmann transport equation by inversion of the collision matrix and the relative role of various scattering mechanisms in limiting the low temperature and View the MathML source mobility is estimated. Finally, the first observation of Shubnikov oscillations in InAsSb is discussed.
Resumo:
ZnO:Al thin films were prepared on glass and silicon substrates by the sol-gel spin coating method. The x-ray diffraction (XRD) results showed that a polycrystalline phase with a hexagonal structure appeared after annealing at 400 degrees C for 1 h. The transmittance increased from 91 to about 93% from pure ZnO films to ZnO film doped with 1 wt% Al and then decreased for 2 wt% Al. The optical band gap energy increased as the doping concentration was increased from 0.5 wt% to 1 wt% Al. The metal oxide semiconductor (MOS) capacitors were fabricated using ZnO films deposited on silicon (100) substrates and electrical properties such as current versus voltage (I-V) and capacitance versus voltage (C-V) characteristics were studied. The electrical resistivity decreased and the leakage current increased with an increase of annealing temperature. The dielectric constant was found to be 3.12 measured at 1 MHz. The dissipation value for the film annealed at 300 degrees C was found to be 3.1 at 5 V. (C) 2011 Elsevier Ltd. All rights reserved.
Resumo:
Thin films of Sb40Se20S40 with thickness 1000 nm were prepared by thermal evaporation technique. The amorphous nature of the thin films was verified by X-ray diffractometer. The chemical composition of the deposited thin films was examined by energy dispersive X-ray analysis (EDAX). The changes in optical properties due to the influence of laser radiation on amorphous thin films of Sb40Se20S40 glassy alloy were calculated from absorbance spectra as a function of photon energy in the wavelength region 450-900 nm. Analysis of the optical absorption data shows that the rule of non-direct transitions predominates. It has been observed that laser-irradiation of the films leads to a decrease in optical band gap while increase in absorption coefficient. The decrease in the optical band gap is explained on the basis of change in nature of films due to disorderness. The optical changes are supported by X-ray photoelectron spectroscopy and Raman spectroscopy. (C) 2012 Elsevier B.V. All rights reserved.
Resumo:
The electrical switching behavior of amorphous GexSe35-xTe65 thin film samples has been studied in sandwich geometry of electrodes. It is found that these samples exhibit memory switching behavior, which is similar to that of bulk Ge-Se-Te glasses. As expected, the switching voltages of GexSe35-xTe65 thin film samples are lower compared to those of bulk samples. In both thin film amorphous and bulk glassy samples, the switching voltages are found to increase with the increase in Ge concentration, which is consistent with the increase in network connectivity with the addition of higher coordinated Ge atoms. A sharp increase is seen in the composition dependence of the switching fields of amorphous GexSe35-xTe65 films above x = 21, which can be associated with the stiffness transition. Further, the optical band gap of a-GexSe35-x Te-65 thin film samples, calculated from the absorption spectra, is found to show an increasing trend with the increase in Ge concentration, which is consistent with the variation of switching fields with composition. The increase in structural cross-linking with progressive addition of 4-fold coordinated Ge atoms is one of the main reasons for the observed increase in switching fields as well as band gaps of GexSe35-xTe65 samples. (C) 2011 Elsevier B.V. All rights reserved.
Resumo:
Purpose: The authors aim at developing a pseudo-time, sub-optimal stochastic filtering approach based on a derivative free variant of the ensemble Kalman filter (EnKF) for solving the inverse problem of diffuse optical tomography (DOT) while making use of a shape based reconstruction strategy that enables representing a cross section of an inhomogeneous tumor boundary by a general closed curve. Methods: The optical parameter fields to be recovered are approximated via an expansion based on the circular harmonics (CH) (Fourier basis functions) and the EnKF is used to recover the coefficients in the expansion with both simulated and experimentally obtained photon fluence data on phantoms with inhomogeneous inclusions. The process and measurement equations in the pseudo-dynamic EnKF (PD-EnKF) presently yield a parsimonious representation of the filter variables, which consist of only the Fourier coefficients and the constant scalar parameter value within the inclusion. Using fictitious, low-intensity Wiener noise processes in suitably constructed ``measurement'' equations, the filter variables are treated as pseudo-stochastic processes so that their recovery within a stochastic filtering framework is made possible. Results: In our numerical simulations, we have considered both elliptical inclusions (two inhomogeneities) and those with more complex shapes (such as an annular ring and a dumbbell) in 2-D objects which are cross-sections of a cylinder with background absorption and (reduced) scattering coefficient chosen as mu(b)(a)=0.01mm(-1) and mu('b)(s)=1.0mm(-1), respectively. We also assume mu(a) = 0.02 mm(-1) within the inhomogeneity (for the single inhomogeneity case) and mu(a) = 0.02 and 0.03 mm(-1) (for the two inhomogeneities case). The reconstruction results by the PD-EnKF are shown to be consistently superior to those through a deterministic and explicitly regularized Gauss-Newton algorithm. We have also estimated the unknown mu(a) from experimentally gathered fluence data and verified the reconstruction by matching the experimental data with the computed one. Conclusions: The PD-EnKF, which exhibits little sensitivity against variations in the fictitiously introduced noise processes, is also proven to be accurate and robust in recovering a spatial map of the absorption coefficient from DOT data. With the help of shape based representation of the inhomogeneities and an appropriate scaling of the CH expansion coefficients representing the boundary, we have been able to recover inhomogeneities representative of the shape of malignancies in medical diagnostic imaging. (C) 2012 American Association of Physicists in Medicine. [DOI: 10.1118/1.3679855]
Resumo:
We propose fundamental improvements in three-dimensional (3D) resolution of multiple excitation spot optical microscopy. The excitation point spread function (PSF) is generated by two interfering counter-propagating depth-of-focus beams along the optical axis. Detection PSF is obtained by coherently interfering the emitted fluorescent light (collected by both the objectives) at the detector. System PSF shows upto 14-fold reduction in focal volume as compared to confocal, and almost 2-fold improvement in lateral resolution. Proposed PSF has the ability to simultaneously excite multiple 3D-spots of sub-femtoliter volume. Potential applications are in fluorescence microscopy and nanobioimaging. Copyright 2011 Author(s). This article is distributed under a Creative Commons Attribution 3.0 Unported License. [doi:10.1063/1.3598413]
Resumo:
Crystals of a new nonlinear optical (NLO) material, viz., L-asparagine-L-tartaric acid (LALT)(1) were grown by slow evaporation of an aqueous solution containing equimolar concentrations of L-asparagine and t-tartaric acid. The structure of the title compound which crystallizes in the non-centrosymmetric monoclinic space group P2(1) consists of a molecule of L-asparagine and a molecule of free L-tartaric acid both of which are interlinked by three varieties of H-bonding interactions namely O-H center dot center dot center dot O, N-H center dot center dot center dot O and C-H center dot center dot center dot O. The UV-Vis-NIR spectrum of 1 reveals its transparent nature while the vibrational spectra confirm the presence of the functional groups in 1. The thermal stability and second harmonic generation (SHG) conversion efficiency of 1 were investigated. (C) 2012 Elsevier B.V. All rights reserved.
Resumo:
Copper dodecanoate films prepared by emulsion method exhibit superhydrophobic property with water contact angle of 155 degrees and sliding angle of <2 degrees. The films have been characterised by using X-ray diffraction, field emission scanning electron microscopy and Fourier transform infrared spectroscopy techniques. Surface microstructure of copper dodecanoate consists of numerous microscale papillas of about 6-12 mu m in length with a diameter in the range of 360-700 nm. The superhydrophobicity of the films is due to their dual micronano surface morphology. The wetting behaviour of the film surface was studied by a simple water immersion test. The results show that copper dodecanoate film retained superhydrophobic property even after immersing in water for about 140 h. The optical absorption spectrum exhibits two broadbands centred at 388 and 630 nm that have been assigned to B-2(1g) -> E-2(g) and B-2(1g) -> B-2(2g) transitions of Cu2+ ions, respectively. The electron paramagnetic resonance spectrum exhibits two resonance signals with effective g values at g(parallel to)approximate to 2.308 and g(perpendicular to) approximate to 2.071, which suggests that the unpaired electron occupies d(x2-y2) orbital in the ground state. Copyright (C) 2011 John Wiley & Sons, Ltd.
Resumo:
Amorphous thin film Ge15Te85-xSnx (1 <= x <= 5) and Ge17Te83-xSnx (1 <= x <= 4) switching devices have been deposited in sandwich geometry using a flash evaporation technique, with aluminum as the top and bottom electrodes. Electrical switching studies indicate that these films exhibit memory type electrical switching behavior. The switching fields for both the series of samples have been found to decrease with increase in Sn concentration, which confirms that the metallicity effect on switching fields/voltages, commonly seen in bulk glassy chalcogenides, is valid in amorphous chalcogenide thin films also. In addition, there is no manifestation of rigidity percolation in the composition dependence of switching fields of Ge15Te85-xSnx and Ge17Te83-xSnx amorphous thin film samples. The observed composition dependence of switching fields of amorphous Ge15Te85-xSnx and Ge17Te83-xSnx thin films has been understood on the basis of Chemically Ordered Network model. The optical band gap for these samples, calculated from the absorption spectra, has been found to exhibit a decreasing trend with increasing Sn concentration, which is consistent with the composition dependence of switching fields.
Resumo:
Thin films were thermally evaporated from the bulk glasses of As40Se60-xSbx (with x = 0, 5, 10, 15 at.%) under high vacuum. We have characterized the deposited films by Fourier Transform Infrared spectroscopy. The relationship between the structural and optical properties and the compositional variation has been investigated. Increasing Sb content was found to affect the thermal and optical properties of these films. Non-direct electronic transition was found to be responsible for the photon absorption inside the investigated films. It was found that, the optical band gap E-o decreases while the width of localized states (Urbach energy) E-e increases. (C) 2011 Elsevier B.V. All rights reserved.
Resumo:
This work focuses on the design of torsional microelectromechanical systems (MEMS) varactors to achieve highdynamic range of capacitances. MEMS varactors fabricated through the polyMUMPS process are characterized at low and high frequencies for their capacitance-voltage characteristics and electrical parasitics. The effect of parasitic capacitances on tuning ratio is studied and an equivalent circuit is developed. Two variants of torsional varactors that help to improve the dynamic range of torsional varactors despite the parasitics are proposed and characterized. A tuning ratio of 1:8, which is the highest reported in literature, has been obtained. We also demonstrate through simulations that much higher tuning ratios can be obtained with the designs proposed. The designs and experimental results presented are relevant to CMOS fabrication processes that use low resistivity substrate. (C) 2012 Society of Photo-Optical Instrumentation Engineers (SPIE). DOI: 10.1117/1.JMM.11.1.013006]
Resumo:
Lamb wave type guided wave propagation in foam core sandwich structures and detectability of damages using spectral analysis method are reported in this paper. An experimental study supported by theoretical evaluation of the guided wave characteristics is presented here that shows the applicability of Lamb wave type guided ultrasonic wave for detection of damage in foam core sandwich structures. Sandwich beam specimens were fabricated with 10 mm thick foam core and 0.3 mm thick aluminum face sheets. Thin piezoelectric patch actuators and sensors are used to excite and sense guided wave. Group velocity dispersion curves and frequency response of sensed signal are obtained experimentally. The nature of damping present in the sandwich panel is monitored by measuring the sensor signal amplitude at various different distances measured from the center of the linear phased array. Delaminations of increasing width are created and detected experimentally by pitch-catch interrogation with guided waves and wavelet transform of the sensed signal. Signal amplitudes are analyzed for various different sizes of damages to differentiate the damage size/severity. A sandwich panel is also fabricated with a planer dimension of 600 mm x 400 mm. Release film delamination is introduced during fabrication. Non-contact Laser Doppler Vibrometer (LDV) is used to scan the panel while exciting with a surface bonded piezoelectric actuator. Presence of damage is confirmed by the reflected wave fringe pattern obtained from the LDV scan. With this approach it is possible to locate and monitor the damages by tracking the wave packets scattered from the damages.
Resumo:
Transparent glasses in the BaO-Na2O-B2O3 (BNBO) system were fabricated via the conventional melt-quenching technique. The amorphous and the glassy nature of the as-quenched samples were confirmed by x-ray powder diffraction (XRD) and differential thermal analysis (DTA), respectively. Cyclic heat treatment of the as-quenched glasses yielded transparent glass-microcrystal composites. The volume fraction of the crystallites and their sizes could be easily controlled by this process. Heat-treated samples were highly transparent owing to the minimum mismatch between the refractive indices of the crystallites and the glass residual matrix. BNBO samples that were heat treated at 540A degrees C for 4 h for 10 cycles were found to be 60% to 70% transparent in the 500 nm to 900 nm wavelength range.
Resumo:
The Ce-doped BiFeO3 (BFO) nanoparticles (NPs) were synthesized using a facile solgel route with varying Ce concentrations in the range of 15 mol%. Ferroelectric transition temperature was found to shift from 723 degrees C +/- 5 degrees C for pristine BFO NPs to 534 degrees C +/- 3 degrees C for 5 mol% Ce-doped BFO NPs. UVVis absorption spectra of BFO NPs showed a significant blue shift of similar to 100 nm on Ce doping. The Fourier transformed infrared (FTIR) spectrum centered similar to 550 cm(-1) becomes considerably broadened on Ce doping which is due to additional closely spaced vibrational peaks as revealed by the second derivative FTIR analysis. High-frequency EPR measurements indicated that clustering occurs at high dopant levels, and that Fe is present as Fe(3+)corroborating Mossbauer measurements. The values of saturation and remanent magnetization for 3% Ce-doped BFO NPs are 3.03 and 0.49 emu/g, respectively, which are quite significant at room temperature, making it more suitable for technological applications.