360 resultados para SOLIDIFICATION BEHAVIOR


Relevância:

20.00% 20.00%

Publicador:

Resumo:

Two new one-dimensional heterometallic complexes, Mn3Na(L)(4)(CH3CO2)(MeOH)(2)]-(ClO4)(2)center dot 3H(2)O (1), Mn3Na(L)(4)(CH3CH2CO2)-(MeOH)(2)](ClO4)(2)center dot 2MeOH center dot H2O (2) LH2 = 2-methyl-2-(2-pyridyl)propane-1,3-diol], have been synthesized and characterized by X-ray crystallography. Both complexes feature Mn-II and Na-I ions in trigonal-prismatic geometries that are linked to octahedral Mn-IV ions by alkoxy bridges. Variable-temperature direct- and alternating-current magnetic susceptibility data indicated a spin ground state of S = 11/2 for both complexes. Density functional theory calculations performed on 1 supported this conclusion.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The present paper considers the formation of crystalline phases during solidification and crystallisation of the Zr53Cu21Al10Ni8Ti8 alloy. Solidification was carried out by a copper mould casting technique, which yielded a partially crystalline microstructure comprising a `big cube phase' in a dendritic morphology and a bct Zr2Ni phase. Detailed high-resolution microscopy was carried out to determine possible mechanisms for the formation of the crystalline phases. Based on microstructural examinations, it was established that the dendrites grew by the attachment of atomistic ledges. The bct Zr2Ni phase, formed during solidification and crystallisation, showed various types of faults depending on the crystallite size, and its crystallography was examined in detail. It has been shown that the presence of these faults could be explained by anti-site occupancy in the bct lattice of the Zr2Ni phase.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

There is a research knowledge gap for the dry wear data of nitride treated Stainless Steel in high temperature and high vacuum environment. In order to fill this gap, plasma nitriding was done on austenitic Stainless Steel type AISI 316LN (316LN SS) and dry sliding wear tests have been conducted at 25 degrees C, 200 degrees C and 400 degrees C in high vacuum of 1.6 x 10(-4) bar. The two different slider material (316LN SS and Colmonoy) and two different sliding speeds (0.0576 m/s and 0.167 m/s) have been used. The tribological parameters such as friction coefficient, wear mechanism and volume of metal loss have been evaluated. Scanning Electron Microscopy (SEM) was used to study the surface morphology of the worn pins and rings. Electronic balancing machine was used to record the mass of metal loss during wear tests. The 2D optical profilometer was used to measure the depth of the wear track. The Plasma Nitride treated 316LN SS rings (PN rings) exhibit excellent wear resistance against 316LN SS pin and Colmonoy pin at all temperatures. However, PN ring vs. Colmonoy pin Pair shows better wear resistance than PN ring vs. 316LN SS pin Pair at higher temperature. (C) 2012 Elsevier B.V. All rights reserved.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

We present a critical investigation on the structural, magnetic, and magnetotransport properties of two sets of polycrystalline SrRuO3 samples with uniquely defined ferromagnetic transition temperatures. The ac magnetic susceptibility study exhibits the remarkable memory effect, a distinct characteristic of glassy behavior, at low temperatures. The transport study suggests a crossover from Fermi-liquid to non-Fermi-liquid behavior. Most strikingly, the temperature-dependent magnetoresistance exhibits two distinct dips (one around ferromagnetic ordering temperature and the other around 50 K), resembling a double-well potential in appearance. In addition, the temperature-dependent coercive field shows a plateau around 50 K. An attempt has been made to employ neutron diffraction to understand the genesis of such unusual low-temperature magnetic features. From the neutron-diffraction study, we find the evidence for changes in the unit-cell lattice parameters around 60 K and, thus, believe that the low-temperature anomalous magnetic response is closely intertwined to lattice-parameter change.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

In this paper, we report a synthesis, characterization and electrochemical properties of V2O5 nanobelts. V2O5 nanobelts have been prepared via hydrothermal treatment of commercial V2O5 in acidic (HCl/H2SO4) medium at relatively low temperature (160 degrees C). The hydrothermally derived products have been characterized by powder X-ray diffraction (XRD), Fourier transform infrared spectroscopy (FT-IR), Raman spectroscopy, X-ray photo electron spectroscopy (XPS), UV-Vis spectroscopy, Scanning/Transmission electron microscopy (SEM/TEM). XRD pattern of V2O5 nanobelts show an orthorhombic phase. From the FTIR spectrum, the peak observed at 1018 cm-1 is characteristic of the stretching vibration mode of the terminal vanadyl, V = O. The UV-Vis absorption spectrum of V2O5 nanobelts show maximum absorbance at 430 nm, which was blue-shifted compared to that of bulk V2O5. TEM micrographs reveal that the products consist of nanobelts of 40-200 nm in thickness and several tens of micrometers in length. The electrochemical analysis shows an initial discharge capacity of 360 mAh g-1 and its almost stabilized capacity is reached to 250 mAh g-1 after 55 cycles. A probable reaction mechanism for the formation of orthorhombic V2O5 nanobelts is proposed.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

We present the study involving the dependence of carrier concentration of InN films, grown on GaN templates using the plasma assisted molecular beam epitaxy system, on growth temperature. The influence of InN carrier concentration on the electrical transport behavior of InN/GaN heterostructure based Schottky junctions is also discussed. The optical absorption edge of InN film was found to be strongly dependent on carrier concentration, and was described by Kane's k.p model, with non-parabolic dispersion relation for carrier in the conduction band. The position of the Fermi-level in InN films was modulated by the carrier concentration in the InN films. The barrier height of the heterojunctions as estimated from I-V characteristic was also found to be dependent on the carrier concentration of InN. (C) 2012 Elsevier Ltd. All rights reserved.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Among all methods of metal alloy slurry preparation, the cooling slope method is the simplest in terms of design and process control. The method involves pouring of the melt from top, down an oblique and channel shaped plate cooled from bottom by counter flowing water. The melt, while flowing down, partially solidifies and forms columnar dendrites on plate wall. These dendrites are broken into equiaxed grains and are washed away with melt. The melt, together with the equiaxed grains, forms semisolid slurry collected at the slope exit and cast into billets having non-dendritic microstructure. The final microstructure depends on several process parameters such as slope angle, slope length, pouring superheat, and cooling rate. The present work involves scaling analysis of conservation equations of momentum, energy and species for the melt flow down a cooling slope. The main purpose of the scaling analysis is to obtain a physical insight into the role and relative importance of each parameter in influencing the final microstructure. For assessing the scaling analysis, the trends predicted by scaling are compared against corresponding numerical results using an enthalpy based solidification model with incorporation of solid phase movement.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

In the present work, the evolution of microstructure during solidification of A356 alloy under stirring is performed experimentally in a high temperature concentric viscometer. The stirring during solidification results a semisolid slurry in the annular space between the cylinders. This slurry is removed periodically during processing using a vacuum removal quartz tube and quenched in water for micrograph analysis. From the micrograph analysis, the shape, stacking arrangement and corresponding microstructural evolution of the suspended primary particles in the slurry are studied. The work also predicts the fraction of solid present in the extracted slurry. Finally, the effect of microstructure and the solid-fraction on the slurry viscosity is presented.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

In this paper, size dependent linear free flexural vibration behavior of functionally graded (FG) nanoplates are investigated using the iso-geometric based finite element method. The field variables are approximated by non-uniform rational B-splines. The nonlocal constitutive relation is based on Eringen's differential form of nonlocal elasticity theory. The material properties are assumed to vary only in the thickness direction and the effective properties for the FG plate are computed using Mori-Tanaka homogenization scheme. The accuracy of the present formulation is demonstrated considering the problems for which solutions are available. A detailed numerical study is carried out to examine the effect of material gradient index, the characteristic internal length, the plate thickness, the plate aspect ratio and the boundary conditions on the global response of the FG nanoplate. From the detailed numerical study it is seen that the fundamental frequency decreases with increasing gradient index and characteristic internal length. (c) 2012 Elsevier B.V. All rights reserved.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

A new coupled approach is presented for modeling the hydrogen bubble evolution and engulfment during an aluminum alloy solidification process in a micro-scale domain. An explicit enthalpy scheme is used to model the solidification process which is coupled with a level-set method for tracking the hydrogen bubble evolution. The volume averaging techniques are used to model mass, momentum, energy and species conservation equations in the chosen micro-scale domain. The interaction between the solid, liquid and gas interfaces in the system have been studied. Using an order-of-magnitude study on growth rates of bubble and solid interfaces, a criterion is developed to predict bubble elongation which can occur during the engulfment phase. Using this model, we provide further evidence in support of a conceptual thought experiment reported in literature, with regard to estimation of final pore shape as a function of typical casting cooling rates. The results from the proposed model are qualitatively compared with in situ experimental observations reported in literature. The ability of the model to predict growth and movement of a hydrogen bubble and its subsequent engulfment by a solidifying front has been demonstrated for varying average cooling rates encountered in typical sand, permanent mold, and various casting processes. (C) 2012 Elsevier B.V. All rights reserved.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Tert-butyl 2,2-bis(2,4-dinitrophenyl)ethanoate was prepared from the ethanolic solution of 1-chloro-2,4-dinitrobenzene, tert-butyl 3-oxobutanoate and triethylamine. Acetyl group in tert-butyl 3-oxobutanoate has cleaved off during the formation of the title molecule. UV-VIS, IR, 1H NMR, 13C NMR, Proton-Proton COSY data and single crystal XRD results support the proposed structure. Flammability test, impact sensitivity test and TG/DTA studies at different heating rates on the synthesized molecule imply that it is an insensitive high energy density material.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The morphology of nanocrystalline Co3O4 synthesized through microwave irradiation of a solution of a cobalt complex is found to depend reproducibly on the conditions of synthesis and, in particular, on the composition of the solvent used. Despite the rapidity of the process, oriented aggregation occurs under certain conditions, depending on solvent composition. Annealing the oriented samples leads to microstructures with significant porosity, rendering the material suitable as electrodes for electrochemical capacitors. Electrochemical analysis of the oxide samples was carried out in 0.1M Na2SO4 electrolyte vs. Ag/AgCl electrode. A stable specific capacitance of 221 F/g was measured for a meso-porous sample displaying oriented aggregation. Stability of these oxide materials were checked for longer charge-discharge cycling. (C) 2012 The Electrochemical Society. DOI: 10.1149/2.002210jes] All rights reserved.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

In this work, Na0.33V2O5 center dot 1.5H(2)O nanorings/nanorods and Na0.33V2O5 center dot 1.5H(2)O/reduced graphene oxide (RGO) composites have been prepared through a facile hydrothermal route in acidic medium at 200 degrees C for 2 days. The hydrothermally derived products have been characterized by powder X-ray diffraction (XRD), Fourier transform infrared spectroscopy (FT-IR), Raman spectroscopy, UV-Visible spectroscopy, Thermogravimetric analysis (TGA), Field emission scanning electron microscopy (FESEM), Transmission electron microscopy (TEM) and electrochemical discharge-charge cycling in lithium ion battery. XRD pattern exhibits the layered structure of Na0.33V2O5 center dot 1.5H(2)O and the composite shows the presence of RGO at 2 theta = 25.8 degrees. FTIR spectrum shows that the band at 760 cm(-1) could be assigned to a V-OH2 stretching mode due to coordinated water. Raman spectrum shows that the band at 264 cm(-1) is due to the presence of water molecules between the layers. FESEM/TEM micrographs reveal that the products consist of nanorings of inner diameter 5 mu m and thickness of the ring is found to be 200-300 nm. Addition of exfoliated graphene oxide (EGO) destroys the formation of rings. The reduction of EGO sheets into RGO is also evidenced by the red shift of the absorbance peak from 228 nm to 264 nm. In this composite Na0.33V2O5 center dot 1.5H(2)O nanorods may adhere to the surface of RGO and/or embedded in the RGO nanosheets. As a result, an effective three-dimensional conducting network was formed by bridging RGO nanosheets, which can facilitate electron transport effectively and thus improve the kinetics and rate performance of Na0.33V2O5 center dot 1.5H(2)O nanorings/nanorods. The Na0.33V2O5 center dot 1.5H(2)O/RGO composites exhibited a discharge capacity of 340 mAh g(-1) at a current density of 0.1 mA g(-1) and also an improved cyclic stability. RGO plays a `flexible confinement' function to enwrap Na0.33V2O5 center dot 1.5H(2)O nanorods, which can compensate for the volume change and prevent the detachment and agglomeration of pulverized Na0.33V2O5 center dot 1.5H(2)O, thus extending the cycling life of the electrode. A probable reaction mechanism for the formation of Na0.33V2O5 center dot 1.5H(2)O nanorings is also discussed. (C) 2012 Elsevier B.V. All rights reserved.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

In an effort to study the role of strain rate response on the tribological behavior of metals, room temperature experiments were conducted by sliding commercially pure titanium and a-iron pins against an H-11 die steel flats of various surface textures. The steel flat surface textures were specifically prepared to allow for imposing varying amounts of strain rates at the contacting interface during sliding motion. In the experiments, it was observed that titanium (a harder material than iron) formed a transfer layer on H-11 steel surface textures that produced higher strain rates. In contrast, the titanium pins abraded the steel surfaces that produced lower strain rates. The iron pins were found to abrade the H-11 steel surface regardless of the surface texture characteristics. This unique tribological behavior of titanium is likely due to the fact that titanium undergoes adiabatic shear banding at high strain rates, which creates pathways for lower resistance shear planes. These shear planes lead to fracture and transfer layer formation on the surface of the steel flat, which ultimately promotes a higher strain rate of deformation at the asperity level. Iron does not undergo adiabatic shear banding and thus more naturally abrades the surfaces. Overall, the results clear indicated that a materials strain rate response can be an important factor in controlling the tribological behavior of a plastically deforming material at the asperity level. DOI: 10.1115/1.4007675]

Relevância:

20.00% 20.00%

Publicador:

Resumo:

In this paper, we report a significant improvement in mechanical and oxidation properties of near eutectic Nb-Si alloys by the addition of aluminum (Al) and control of microstructural length scale. A comparative study of two alloys Nb-18.79at%Si and Nb-12.3at%Si-9at%Al were carried out. The processing for microstructure refinements were carried out by vacuum suction casting in water cooled thick copper mould. It is shown that addition of Al suppresses Nb3Si phase and promotes beta Nb5Si3 phase under nonequilibrium solidification condition. The microstructural length scale and in particular eutectic spacing reduces significantly to 50-100 nm in suction cast ternary alloy. A detailed TEM study shows the presence of delta-Nb11Si4 phase in Nb matrix. The hardness of Nb solid solution can be increased as a consequence to a level observed in Nb3Si intermetallic due to the well oriented precipitates. Compression test yields the ultimate strength of 1.8 +/- 0.1 GPa and engineering strain of 2.3 +/- 0.03%. In comparison, the binary Nb-18.79 at% Si alloy possesses an ultimate strength of 1.35 +/- 0.1 GPa and strain of 0.2 +/- 0.01% when processed under identical conditions. The latter exhibits coarser microstructural length scale (300-400 nm) and a brittle behavior. The indentation fracture toughness of Al containing suction cast alloy shows a value of 20.2 +/- 0.5 MPa root m which represents a major improvement over bulk Nb-Si eutectic alloy. The detailed thermal studies confirm a multifold improvement in oxidation resistance up to 1000 degrees C. (C) 2012 Elsevier B.V. All rights reserved.