326 resultados para BETHE LATTICE


Relevância:

10.00% 10.00%

Publicador:

Resumo:

Bacillus subtilis BacB is an oxidase that is involved in the production of the antibiotic bacilysin. This protein contains two double-stranded beta-helix (cupin) domains fused in a compact arrangement. BacB crystallizes in three crystal forms under similar crystallization conditions. An interesting observation was that a slight perturbation of the crystallization droplet resulted in the nucleation of a different crystal form. An X-ray absorption scan of BacB suggested the presence of cobalt and iron in the crystal. Here, a comparative analysis of the different crystal forms of BacB is presented in an effort to identify the basis for the different lattices. It is noted that metal ions mediating interactions across the asymmetric unit dominate the different packing arrangements. Furthermore, a normalized B-factor analysis of all the crystal structures suggests that the solvent-exposed metal ions decrease the flexibility of a loop segment, perhaps influencing the choice of crystal form. The residues coordinating the surface metal ion are similar in the triclinic and monoclinic crystal forms. The coordinating ligands for the corresponding metal ion in the tetragonal crystal form are different, leading to a tighter packing arrangement. Although BacB is a monomer in solution, a dimer of BacB serves as a template on which higher order symmetrical arrangements are formed. The different crystal forms of BacB thus provide experimental evidence for metal-ion-mediated lattice formation and crystal packing.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

W/Cr codoped Bi4Ti3O12 ceramics, Bi4Ti3-xWxO12+x+0.2 wt%Cr2O3 (BITWC, x=0-0.15), were prepared using a solid-state reaction method. The crystallographic evolution and phase analysis were distinctly determined focusing on the X-ray diffraction peak changes in (020)/(200) and (220)/(1115) diffraction planes, by which the lattice parameters, a, b, and c can be refined. The thermal variations of permittivity, dielectric loss (tan delta), impedance, and electrical conductivity properties were characterized. A decrease in the values of Curie temperature from 675 degrees to 640 degrees C and an increase in the values of the dielectric constant due to an increase of W6+/Cr3+ content were observed. The highest piezoelectric constant, d(33) of 22 pC/N, was achieved with the composition of Bi4Ti2.975W0.025O12.025+0.2 wt% Cr2O3. Also, this composition had a lower electrical conductivity than the other investigated compositions.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

We mention here an unusual disorder effect in manganites, namely the ubiquitous hopping behavior for electron transport observed in them over a wide range of doping. We argue that the implied Anderson localization is intrinsic to manganites, because of the existence of polarons in them which are spatially localized, generally at random sites (unless there is polaron ordering). We have developed a microscopic two fluid lb model for manganites, where l denotes lattice site localized l polarons, and b denotes band electrons. Using this, and the self-consistent theory of localization, we show that the occupied b states are Anderson localized in a large range of doping due to the scattering of b electrons from l polarons. Numerical simulations which further include the effect of long range Coulomb interactions support this, as well the existence of a novel polaronic Coulomb glass. A consequence is the inevitable hopping behaviour for electron transport observed in doped insulating manganites.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Synthesis and densification of monolithic zirconium carbide (ZrC) has been carried out by reactive hot pressing of zirconium (Zr) and graphite (C) powders in the molar ratios 1:1, 1.25:1, 1.5:1, and 2:1 at 40 MPa, 1200 degrees-1600 degrees C. Monolithic ZrC could be synthesized with a C/Zr ratio similar to 0.5-1.0 and the post heat-treated samples have the lattice parameter in the range 4.665 to 4.698 A. Densification improves with an increasing deviation from the stoichiometry. Fine-grained (similar to 1 mu m) and nearly fully dense material (99% RD) could be obtained at a temperature as low as 1200 degrees C with C/Zr similar to 0.67. Microstructural and XRD observations suggest that densification occurred at low temperatures with nonstoichiometric Zr-C powder mixtures.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Ultrafine powders of (Ti1-xSnx)O2, 0lattice.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Proton NMR relaxation measurements have been carried out in anti-ferroelectric Betaine phosphate (BP), ferroelectric Betaine phosphite (BPI) and the mixed system BPI(1-x)BPx, at 11.4MHz and 23.3MHz from 300K to 80K for x=0.0, 0.25, 0.45, 0.85, and 1.0. The temperature dependence of spin lattice relaxation time T, exhibits two minima as expected from the BPP model in BP and BPI. The Larmor frequency dependence of T, in the mixed system is rather unusual and exhibits different slopes for the low temperature wings at the two frequencies, which is a clear experimental evidence of the presence of different methyl groups with different activation energies (E-a) indicating disorder.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Summary form only given. The authors have developed a controllable HTSC (high-temperature superconductor) weak-link fabrication process for producing weak links from the high-temperature superconductor YBa2Cu3O7-x (YBCO), using PrBa2Cu3O7-x (PBCO) as a lattice-matched semiconducting barrier layer. The devices obtained show current-voltage characteristics similar to those observed for low-temperature superconductor/normal-metal/superconductor (SNS) devices. The authors found good scaling of the critical currents Ic with area, A, and scaling of the resistances Rj with 1/A; the typical values of the IcRj product of 3.5 mV are consistent with traditional SNS behavior. The authors observed Shapiro steps in response to 100-GHz millimeter-wave radiation and oscillation of the DC supercurrent in a transverse magnetic field, thus demonstrating that both the AC and DC Josephson effects occur in these devices.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Nanostructured ZnFe2O4 ferrites with different grain sizes were prepared by high energy ball milling for various milling times. Both the average grain size and the root mean square strain were estimated from the x-ray diffraction line broadening. The lattice parameter initially decreases slightly with milling and it increases with further milling. The magnetization is found to increase as the grain size decreases and its large value is attributed to the cation inversion associated with grain size reduction. The Fe-57 Mossbauer spectra were recorded at 300 K and 77 K for the samples with grain sizes of 22 and 11 nm. There is no evidence for the presence of the Fe2+ charge state. At 77 K the Mossbauer spectra consist of a magnetically ordered component along with a doublet due to the superparamagnetic behaviour of small crystalline grains with the superparamagnetic component decreasing with grain size reduction. At 4.2 K the sample with 11 nm grain size displays a magnetically blocked state as revealed by the Mossbauer spectrum. The Mossbauer spectrum of this sample recorded at 10 K in an external magnetic field of 6 T applied parallel to the direction of gamma rays clearly shows ferrimagnetic ordering of the sample. Also, the sample exhibits spin canting with a large canting angle, maybe due to a spin-glass-like surface layer or grain boundary anisotropies in the material.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

We study a model of fermions hopping on a chain with a weak incommensuration close to dimerization; both q, the deviation of the wave number from pi, and delta, the strength of the incommensuration, are assumed to be small. For free fermions, we show that there are an infinite number of energy bands which meet at zero energy as q approaches zero. The number of states lying inside the q = 0 gap remains nonzero as q/delta --> 0. Thus the limit q --> 0 differs from q = 0, as can be seen clearly in the low-temperature specific heat. For interacting fermions or the XXZ spin-(1/2) chain, we use bosonization to argue that similar results hold. Finally, our results can be applied to the Azbel-Hofstadter problem of particles hopping on a two-dimensional lattice in the presence of a magnetic field.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

The unprecedented absence of direct metal–nucleotide interaction has been observed in the X-ray structure of the ternary metal nucleotide system [Cu(bzim)(H2O)5]2+[IMP]2–·3H2O [IMP = inosine 5-monophosphate(2–), bzim = benzimidazole). The complex crystallizes in the space group P21 with a= 7.013(2), b= 13.179(9), c= 14.565(9)Å, = 94.82(4)°, and Z= 2. The structure was solved by the heavy-atom method and refined by full-matrix least squares on the basis of 1 761 observed (I? 3i) reflections to final R and R values of 0.034 and 0.036 respectively. The CuII has a distorted octahedral co-ordination with a nitrogen of the bzim ligand [Cu–N 1.947(5)Å] and three oxygens of water molecules in the basal plane [mean Cu–O 2.017(3)Å] and two more water oxygens at axial positions [Cu–O 2.194(6) and 2.732(5)Å]. The nucleotide base stacks with the bzim ligand at an average distance of 3.5 Å and an angle of 22°. In the lattice, N(7) of the base is linked to a lattice water through a hydrogen bond, while all the phosphate oxygens are involved in hydrogen bonds with co-ordinated as well as lattice water molecules. The co-ordination behaviour of IMP to CuII is compared in structures containing different -aromatic amines in order to assess the influence of the ternary ligand in complex formation. The present results indicate that, apart from the commonly observed phosphate binding, other modes of co-ordination are possible, these being influenced mainly by the -accepting properties of the ternary ligand.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Internal structures of extraordinarily luminescent semiconductor nanoparticles are probed with photoelectron spectroscopy, establishing a gradient alloy structure as an essential ingredient for the observed phenomenon. Comparative photoluminescence lifetime measurements provide direct evidence for a minimization of nonradiative decay channels because of the removal of interfacial defects due to a progressive change in the lattice parameters in such graded structures, exhibiting a nearly single exponential decay Quantum mechanical, calculations suggest a differential extent of spatial collapse of the electron and the hole wave functions in a way that helps to enhance the photoluminescence efficiency, while at the same time increasing the lifetime of the excited state, as observed in the experiments.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

We study the equilibrium properties of the nearest-neighbor Ising antiferromagnet on a triangular lattice in the presence of a staggered field conjugate to one of the degenerate ground states. Using a mapping of the ground states of the model without the staggered field to dimer coverings on the dual lattice, we classify the ground states into sectors specified by the number of "strings." We show that the effect of the staggered field is to generate long-range interactions between strings. In the limiting case of the antiferromagnetic coupling constant J becoming infinitely large, we prove the existence of a phase transition in this system and obtain a finite lower bound for the transition temperature. For finite J, we study the equilibrium properties of the system using Monte Carlo simulations with three different dynamics. We find that in all the three cases, equilibration times for low-field values increase rapidly with system size at low temperatures. Due to this difficulty in equilibrating sufficiently large systems at low temperatures, our finite-size scaling analysis of the numerical results does not permit a definite conclusion about the existence of st phase transition for finite values of J. A surprising feature in the system is the fact that unlike usual glassy systems; a zero-temperature quench almost always leads to the ground state, while a slow cooling does not.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

The humid aging of composite propellants containing a terpolymer of polybutadiene, acrylic acid, and acrylonitrile (PBAN) as a binder has been studied as a function of aging temperature, relative humidity, and aging time. Three composite types - AP-PBAN, AP-Al-PBAN, and AP-(Al-Mg) alloy- PBAN - have been studied. The burning rates of all three propellant types were unaffected by aging. The calorimetric values of composites containing aluminum-magnesium alloy decreased on aging, and the lattice parameter of the alloy decreased to a value close to that of aluminum. Water absorption in all of the samples increased with increases in the temperature, relative humidity, and aging time. The compression strength of the nonmetalized and aluminized samples decreased on aging, whereas that of the composites containing the alloy increased. The latter effect has been traced to reaction of residual carboxyl groups on the polymer chains with magnesium, leading to cross-linking. The reaction between the -COOH groups and magnesium has been proved using infrared spectroscopy. (Author)

Relevância:

10.00% 10.00%

Publicador:

Resumo:

The formation of crystalline diamond films from amorphous diamond-like carbon films by pulsed laser irradiation with a 300 μs non-Q-switched Nd:YAG laser has been established by a combined study of transmission electron microscopy, x-ray photoelectron spectroscopy, and electrical resistivity. The films have been prepared by glow discharge decomposition of a mixture of propane, n-butane, and hydrogen in a rf plasma operating at a frequency of 13.56 MHz. Prior to laser irradiation, the films have been found to be amorphous by transmission electron microscope studies. After irradiation, the electron diffraction patterns clearly point out the formation of cubic diamond structure with a lattice spacing of 3.555 Å. However, the close similarity between diamond and graphite electron diffraction patterns could sometimes be misleading regarding the formation of a diamond structure, and hence, x-ray photoelectron spectroscopic studies have been carried out to confirm the results. A chemical shift in the C 1s core level binding energies towards higher values, viz., from 286.5 to 287.8 eV after laser irradiation, and a high electrical resistivity >1013 Ω cm are consistent with the growth of diamond structure. This novel "low-temperature, low-pressure" synthesis of diamond films offers enormous potential in terms of device compatibility with other solid-state devices.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

KO2 is a molecular solid consisting of oxygen dimers. K present in the lattice donates an electron which goes on to occupy the O p levels.As the basic electronic structure is similar to that of an oxygen molecule, except for broadening due to solid state effects, KO2 represents the realization of the doping of oxygen molecules arranged in a lattice. These considerations alone result in magnetism with high ordering temperatures as our calculations reveal. However, we find that the high temperature structure is unstable to an orbital ordering (OO) transition. The microscopic considerations driving the OO transition, however, are electrostatic interactions instead of the often encountered superexchange driven ordering within the Kugel-Khomskii model often used to describe the OO. This OO transition is also found to preclude any possibility of high magnetic ordering temperatures, which otherwise seemed possible.