329 resultados para Paternal power


Relevância:

20.00% 20.00%

Publicador:

Resumo:

We propose a novel technique for reducing the power consumed by the on-chip cache in SNUCA chip multicore platform. This is achieved by what we call a "remap table", which maps accesses to the cache banks that are as close as possible to the cores, on which the processes are scheduled. With this technique, instead of using all the available cache, we use a portion of the cache and allocate lesser cache to the application. We formulate the problem as an energy-delay (ED) minimization problem and solve it offline using a scalable genetic algorithm approach. Our experiments show up to 40% of savings in the memory sub-system power consumption and 47% savings in energy-delay product (ED).

Relevância:

20.00% 20.00%

Publicador:

Resumo:

We propose a novel technique for reducing the power consumed by the on-chip cache in SNUCA chip multicore platform. This is achieved by what we call a "remap table", which maps accesses to the cache banks that are as close as possible to the cores, on which the processes are scheduled. With this technique, instead of using all the available cache, we use a portion of the cache and allocate lesser cache to the application. We formulate the problem as an energy-delay (ED) minimization problem and solve it offline using a scalable genetic algorithm approach. Our experiments show up to 40% of savings in the memory sub-system power consumption and 47% savings in energy-delay product (ED).

Relevância:

20.00% 20.00%

Publicador:

Resumo:

We consider a dense, ad hoc wireless network, confined to a small region. The wireless network is operated as a single cell, i.e., only one successful transmission is supported at a time. Data packets are sent between source-destination pairs by multihop relaying. We assume that nodes self-organize into a multihop network such that all hops are of length d meters, where d is a design parameter. There is a contention-based multiaccess scheme, and it is assumed that every node always has data to send, either originated from it or a transit packet (saturation assumption). In this scenario, we seek to maximize a measure of the transport capacity of the network (measured in bit-meters per second) over power controls (in a fading environment) and over the hop distance d, subject to an average power constraint. We first motivate that for a dense collection of nodes confined to a small region, single cell operation is efficient for single user decoding transceivers. Then, operating the dense ad hoc wireless network (described above) as a single cell, we study the hop length and power control that maximizes the transport capacity for a given network power constraint. More specifically, for a fading channel and for a fixed transmission time strategy (akin to the IEEE 802.11 TXOP), we find that there exists an intrinsic aggregate bit rate (Theta(opt) bits per second, depending on the contention mechanism and the channel fading characteristics) carried by the network, when operating at the optimal hop length and power control. The optimal transport capacity is of the form d(opt)((P) over bar (t)) x Theta(opt) with d(opt) scaling as (P) over bar (t) (1/eta), where (P) over bar (t) is the available time average transmit power and eta is the path loss exponent. Under certain conditions on the fading distribution, we then provide a simple characterization of the optimal operating point. Simulation results are provided comparing the performance of the optimal strategy derived here with some simple strategies for operating the network.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

We show that the operation and the output power of a quantum heat engine that converts incoherent thermal energy into coherent cavity photons can be optimized by manipulating quantum coherences. The gain or loss in the efficiency at maximum power depends on the details of the output power optimization. Quantum effects tend to enhance the output power and the efficiency as the photon occupation in the cavity is decreased.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Linear quadratic stabilizers are well-known for their superior control capabilities when compared to the conventional lead-lag power system stabilizers. However, they have not seen much of practical importance as the state variables are generally not measurable; especially the generator rotor angle measurement is not available in most of the power plants. Full state feedback controllers require feedback of other machine states in a multi-machine power system and necessitate block diagonal structure constraints for decentralized implementation. This paper investigates the design of Linear Quadratic Power System Stabilizers using a recently proposed modified Heffron-Phillip's model. This model is derived by taking the secondary bus voltage of the step-up transformer as reference instead of the infinite bus. The state variables of this model can be obtained by local measurements. This model allows a coordinated linear quadratic control design in multi machine systems. The performance of the proposed controller has been evaluated on two widely used multi-machine power systems, 4 generator 10 bus and 10 generator 39 bus systems. It has been observed that the performance of the proposed controller is superior to that of the conventional Power System Stabilizers (PSS) over a wide range of operating and system conditions.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

It is generally known that addition of conducting or insulating particles to mineral transformer oil, lowers its breakdown strength, E-d. However, if the particulates are of molecular dimensions, or nanoparticles, (NPs), as they are called, the breakdown strength is seen to increase considerably. Recent experiments by the authors on oil cooled power equipment such as transformers showed that, nanofluids comprising NPs of selected oxides of iron, such as Fe(3)o(4), called magnetite, added to transformer oil increased the breakdown voltage of the virgin oil and more importantly a remarkable enhancement in the thermal conductivity and the viscosity and hence an increased loadability of the transformer for a given top oil temperature (TOT).

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Introduction of processor based instruments in power systems is resulting in the rapid growth of the measured data volume. The present practice in most of the utilities is to store only some of the important data in a retrievable fashion for a limited period. Subsequently even this data is either deleted or stored in some back up devices. The investigations presented here explore the application of lossless data compression techniques for the purpose of archiving all the operational data - so that they can be put to more effective use. Four arithmetic coding methods suitably modified for handling power system steady state operational data are proposed here. The performance of the proposed methods are evaluated using actual data pertaining to the Southern Regional Grid of India. (C) 2012 Elsevier Ltd. All rights reserved.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

In this letter, we analyze the Diversity Multiplexinggain Tradeoff (DMT) performance of a training-based reciprocal Single Input Multiple Output (SIMO) system. Assuming Channel State Information (CSI) is available at the Receiver (CSIR), we propose a channel-dependent power-controlled Reverse Channel Training (RCT) scheme that enables the transmitter to directly estimate the power control parameter to be used for the forwardlink data transmission. We show that, with an RCT power of (P) over bar (gamma), gamma > 0 and a forward data transmission power of (P) over bar, our proposed scheme achieves an infinite diversity order for 0 <= g(m) < L-c-L-B,L-tau/L-c min(gamma, 1) and r > 2, where g(m) is the multiplexing gain, L-c is the channel coherence time, L-B,L-tau is the RCT duration and r is the number of receive antennas. We also derive an upper bound on the outage probability and show that it goes to zero asymptotically as exp(-(P) over bar (E)), where E (sic) (gamma - g(m)L(c)/L-c-L-B,L-tau), at high (P) over bar. Thus, the proposed scheme achieves a significantly better DMT performance compared to the finite diversity order achieved by channel-agnostic, fixed-power RCT schemes.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

We investigate the effect of a prescribed tangential velocity on the drag force on a circular cylinder in a spanwise uniform cross flow. Using a combination of theoretical and numerical techniques we make an attempt at determining the optimal tangential velocity profiles which will reduce the drag force acting on the cylindrical body while minimizing the net power consumption characterized through a non-dimensional power loss coefficient (C-PL). A striking conclusion of our analysis is that the tangential velocity associated with the potential flow, which completely suppresses the drag force, is not optimal for both small and large, but finite Reynolds number. When inertial effects are negligible (R e << 1), theoretical analysis based on two-dimensional Oseen equations gives us the optimal tangential velocity profile which leads to energetically efficient drag reduction. Furthermore, in the limit of zero Reynolds number (Re -> 0), minimum power loss is achieved for a tangential velocity profile corresponding to a shear-free perfect slip boundary. At finite Re, results from numerical simulations indicate that perfect slip is not optimum and a further reduction in drag can be achieved for reduced power consumption. A gradual increase in the strength of a tangential velocity which involves only the first reflectionally symmetric mode leads to a monotonic reduction in drag and eventual thrust production. Simulations reveal the existence of an optimal strength for which the power consumption attains a minima. At a Reynolds number of 100, minimum value of the power loss coefficient (C-PL = 0.37) is obtained when the maximum in tangential surface velocity is about one and a half times the free stream uniform velocity corresponding to a percentage drag reduction of approximately 77 %; C-PL = 0.42 and 0.50 for perfect slip and potential flow cases, respectively. Our results suggest that potential flow tangential velocity enables energetically efficient propulsion at all Reynolds numbers but optimal drag reduction only for Re -> infinity. The two-dimensional strategy of reducing drag while minimizing net power consumption is shown to be effective in three dimensions via numerical simulation of flow past an infinite circular cylinder at a Reynolds number of 300. Finally a strategy of reducing drag, suitable for practical implementation and amenable to experimental testing, through piecewise constant tangential velocities distributed along the cylinder periphery is proposed and analysed.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

We consider a complex, additive, white Gaussian noise channel with flat fading. We study its diversity order vs transmission rate for some known power allocation schemes. The capacity region is divided into three regions. For one power allocation scheme, the diversity order is exponential throughout the capacity region. For selective channel inversion (SCI) scheme, the diversity order is exponential in low and high rate region but polynomial in mid rate region. For fast fading case we also provide a new upper bound on block error probability and a power allocation scheme that minimizes it. The diversity order behaviour of this scheme is same as for SCI but provides lower BER than the other policies.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

This paper presents analysis and design of multilayer ultra wide band (UWB) power splitter suitable for wireless communications. An UWB power splitter is designed in suspended substrate stripline medium. The quarter wave transformer in the conventional Wilkinson power divider is replaced by broadside coupled lines to achieve tight coupling for broadband operation. The UWB power splitter is analyzed using circuit models of coupled lines and full wave simulator. Experimental results of 3dB power splitter designed using the proposed structure have been verified against the results from circuit simulation and full wave simulation. The return loss is better than 12 dB across the band 3.1GHz to 10.6GHz. Size of the power splitter is 30mm× 20mm×6.38mm.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

In this paper, we study duty cycling and power management in a network of energy harvesting sensor (EHS) nodes. We consider a one-hop network, where K EHS nodes send data to a destination over a wireless fading channel. The goal is to find the optimum duty cycling and power scheduling across the nodes that maximizes the average sum data rate, subject to energy neutrality at each node. We adopt a two-stage approach to simplify the problem. In the inner stage, we solve the problem of optimal duty cycling of the nodes, subject to the short-term power constraint set by the outer stage. The outer stage sets the short-term power constraints on the inner stage to maximize the long-term expected sum data rate, subject to long-term energy neutrality at each node. Albeit suboptimal, our solutions turn out to have a surprisingly simple form: the duty cycle allotted to each node by the inner stage is simply the fractional allotted power of that node relative to the total allotted power. The sum power allotted is a clipped version of the sum harvested power across all the nodes. The average sum throughput thus ultimately depends only on the sum harvested power and its statistics. We illustrate the performance improvement offered by the proposed solution compared to other naive schemes via Monte-Carlo simulations.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Advances in technology have increased the number of cores and size of caches present on chip multicore platforms(CMPs). As a result, leakage power consumption of on-chip caches has already become a major power consuming component of the memory subsystem. We propose to reduce leakage power consumption in static nonuniform cache architecture(SNUCA) on a tiled CMP by dynamically varying the number of cache slices used and switching off unused cache slices. A cache slice in a tile includes all cache banks present in that tile. Switched-off cache slices are remapped considering the communication costs to reduce cache usage with minimal impact on execution time. This saves leakage power consumption in switched-off L2 cache slices. On an average, there map policy achieves 41% and 49% higher EDP savings compared to static and dynamic NUCA (DNUCA) cache policies on a scalable tiled CMP, respectively.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Constellation Constrained (CC) capacity regions of two-user Gaussian Multiple Access Channels (GMAC) have been recently reported, wherein introducing appropriate rotation between the constellations of the two users is shown to maximally enlarge the CC capacity region. Such a Non-Orthogonal Multiple Access (NO-MA) method of enlarging the CC capacity region is referred to as Constellation Rotation (CR) scheme. In this paper, we propose a novel NO-MA technique called Constellation Power Allocation (CPA) scheme to enlarge the CC capacity region of two-user GMAC. We show that the CPA scheme offers CC sum capacities equal (at low SNR values) or close (at high SNR values) to those offered by the CR scheme with reduced ML decoding complexity for some QAM constellations. For the CR scheme, code pairs approaching the CC sum capacity are known only for the class of PSK and PAM constellations but not for QAM constellations. In this paper, we design code pairs with the CPA scheme to approach the CC sum capacity for 16-QAM constellations. Further, the CPA scheme used for two-user GMAC with random phase offsets is shown to provide larger CC sum capacities at high SNR values compared to the CR scheme.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Chronic recording of neural signals is indispensable in designing efficient brain machine interfaces and in elucidating human neurophysiology. The advent of multichannel microelectrode arrays has driven the need for electronics to record neural signals from many neurons. The dynamic range of the system is limited by background system noise which varies over time. We propose a neural amplifier in UMC 130 nm, 2P8M CMOS technology. It can be biased adaptively from 200 nA to 2 uA, modulating input referred noise from 9.92 uV to 3.9 uV. We also describe a low noise design technique which minimizes the noise contribution of the load circuitry. The amplifier can pass signal from 5 Hz to 7 kHz while rejecting input DC offsets at electrode-electrolyte interface. The bandwidth of the amplifier can be tuned by the pseudo-resistor for selectively recording low field potentials (LFP) or extra cellular action potentials (EAP). The amplifier achieves a mid-band voltage gain of 37 dB and minimizes the attenuation of the signal from neuron to the gate of the input transistor. It is used in fully differential configuration to reject noise of bias circuitry and to achieve high PSRR.