301 resultados para STRANDED NUCLEIC-ACIDS
Resumo:
1S,5R,7R)-(-)-10, 10-Dimethyl-3-ethyl-4-oxa--atricyclo[5.2.1.0(1,5)]dec-2-ene 2 was prepared in 95% yield from (1S)-1-amino-2-exo-hydroxyapocamphane 1. The chiral oxazoline could be alkylated (Lhttp://eprints.iisc.ernet.in/cgi/users/home?screen=EPrint::Edit&eprintid=31175&stage=core#tDA/THF/-78 degrees C/RX, RX = ethyl, n-propyl, n-butyl iodides or benzyl bromide) to 3 in 95% yield and > 95% diastereoselectivity, and the products hydrolysed to (R)-2-methylalkanoic acids 4 (43-47% yield, 93-98% e.e.). (C) 2000 Elsevier Science Ltd. All rights reserved.
Resumo:
An electron energy loss spectroscopic study of the formic acid dimer has shown bands centred around 7.2, 8.5, 9.8, and 11.1 eV, of which the first and the third bands are assigned to n- rc* transitions and the other two to n-n* transitions; similar transitions are found in the acetic acid dimer.
Resumo:
The potassium salt of 3-methoxy and 3,5-dimethoxy benzoic acids undergoes deprotonation at the position para to the carboxylate group selectively when treated with LIC-KOR in THF at -78 degrees C and it has been extended to the synthesis of 3,5-dimethoxy-4-methyl benzoic acid. (C) 2000 Elsevier Science Ltd. All rights reserved.
Resumo:
Antibodies raised against denatured DNA complexed with methylated bovine serum albumin have been reported to react with ssDNA but not with dsDNA. Using a highly sensitive avidin-biotin microELISA, we report that such antibodies also bind to dsDNA. Antibodies which reacted with ssDNA and dsDNA were found to be IgG type. The antibodies did not react with tRNA and rRNA. The binding of antibodies to dsDNA was partially inhibited dy individual deoxyribonucleotides. ssDNA as well as dsDNA inhibited the binding of antibodies to dsDNA. The binding of these antibodies to supercoiled and relaxed forms of pBR322 DNA was demonstrated by gel retardation assay. The cross-reaction with ssDNA was observed even after affinity purification on native DNA-cellulose. The antibodies were also shown to bind to poly(dA-dT)·poly(dA-dT)
Resumo:
The effect of four phenoxy compounds [2,4-dichlorophenoxyacetic acid (2,4-D), 2,4,5-trichlorophenoxyacetic acid, 4-chlorophenoxyacetic acid 2-(dimethylamino)ethyl ester (centrophenoxine), and 4-chlorophenoxy ethyl 2-(dimethylamino) ethyl ether (neophenoxine)] on lipid metabolism in groundnut (Arachis hypogaea) leaves was investigated under nonphotosynthetic conditions. In experiments with leaf disks, the uptake of [1-14C]acetate, [32P]orthophosphate, [35S]sulfate and [methyl-14C]choline was substantially inhibited by all the phenoxy compounds except neophenoxine. When the incorporation of these precursors into lipids was measured and expressed as percentage of total uptake, there was significant inhibition of incorporation of [1-14C]acetate and [32P]orthophosphate into lipids by all the compounds except neophenoxine. The incorporation of [methyl-14C]choline was unaffected by all except centrophenoxine which showed stastically significant stimulation. [35S]Sulfate incorporation into lipids was markedly inhibited only by centrophenoxine. The fatty acid synthetase of isolated chloroplasts assayed in the absence of light was inhibited 20–50% by the phenoxy compounds at 0.5 mM concentration. This inhibition showed a dependence on time of preincubation with the herbicide suggesting an interaction with the enzyme. It was, however, reversible and excess substrate did not prevent the inhibition, suggesting that the herbicide interaction may not be at the active site. sn-Glycerol-3-phosphate acyltransferase in the chloroplast and microsomal fractions was inhibited by 2,4-D while the phosphatidic acid phosphatase was insensitive to all the phenoxy compounds. It is concluded that phenoxy compounds affect precursor uptake, their incorporation into lipids, and the chloroplast fatty acid synthetase. The free acids were the most potent compounds while the ester (centrophenoxine) was less effective and the ether (neophenoxine) was completely ineffective in their influence on lipid metabolism.
Resumo:
DNA adopts different conformations not only based on novel base pairs, but also with different chain polarities. Besides several duplex structures (A, B, Z, parallel stranded (ps)-DNA, etc.), DNA also forms higher-order structures like triplex, tetraplex, and i-motif. Each of these structures has its own biological significance. The ps-duplexes have been found to be resistant to certain nucleases and endonucleases. Molecules that promote triple-helix formation have significant potential. These investigations have many therapeutic advantages which may be useful in the regulation of the expression of genes responsible for certain diseases by locking either their transcription (antigene) or translation (antisense). Each DNA minor groove binding ligand (MGBL) interacts with DNA through helical minor groove recognition in a sequence-specific manner, and this interferes with several DNA-associated processes. Incidentally, these ligands interact with some non-B-DNA and with higher-order DNA structures including ps-DNA and triplexes. While the design and recognition of minor grooves of duplex DNA by specific MGBLs have been a topic of many reports, limited information is available on the binding behavior of MGBLs with nonduplex DNA. In this review, we summarize various attempts of the interaction of MGBLs with ps-DNA and DNA triplexes.
Resumo:
Isoselenocyanates derived from Boc/Z-amino acids are prepared by the reaction of the corresponding isonitriles with selenium powder in presence of triethylamine at reflux. The utility of these new classes of isoselenocyanates in the preparation of selenoureidodipeptidomimetics possessing both amino as well as carboxy termini has been accomplished. The H-1 NMR analysis confirmed that the protocol involving the conversion of isonitriles to isoselenocyanates and their use as coupling agents in assembling selenour-eido derivatives is free from racemization. (C) 2010 Elsevier Ltd. All rights reserved.
Resumo:
Thioaroylate ions generated in situ from acyloxyphosphonium salts and tetrathiomolybdate upon Michael addition or ring opening of three membered systems led to a facile synthesis of S-funcationalized thioesters. While the ring opening of aziridines gave very good yield of the products, Micheal addition and epoxide ring opening gave moderate yields.(C) 2010 Elsevier Ltd. All rights reserved.
Resumo:
Antibodies raised against deoxyadenylate and deoxycytidylate were found to react with double stranded DNA as assessed by highly sensitive avidin-biotin microELISA. The binding was specific as it was completely inhibited by the homologous hapten. The antibodies did not react with tRNA and rRNA. These antibodies were also shown to react with supercoiled and relaxed forms of pBR322 DNA as demonstrated by gel retardation assay. ssDNA, single-stranded DNA; dsDNA, double-stranded DNA; CT DNA, calf thymus DNA; AB microELISA, avidin-biotin microELISA; dpA, deoxyadenylate; dpC, deoxycytidylate; avidin-HRP, avidin-horseradish peroxidase
Resumo:
The angiospermous plant parasite Cuscuta derives reduced carbon and nitrogen compounds primarily from its host. Free amino acids along Cuscuta vines in three zones, viz., 0 to 5 cm, 5 to 15 cm, and 15 to 30 cm, which in a broad sense represent the region of cell division, cell elongation and differentiation and vascular tissue differentiation respectively, were quantitatively estimated. The free amino acid content was the highest in the 0 to 5 cm region and progressively decreased along the posterior regions of the vine. The haustorial region showed the lowest content of free amino acids. In general, the free amino acid content in samples collected at 7 p.m. was found to be higher than that in the samples collected at 7 a.m. Three basic amino acids, histidine, the uncommon amino acid γ-hydroxyarginine, and arginine constituted more than 50% of the total free amino acids in all the zones studied except the haustorial region. Aspartic acid and glutamic acid constituted the major portion in the acidic and neutral fraction of amino acids. Glutamine, asparagine, threonine, and serine were eluted together and occurred in substantial amounts. γ-Hydroxyarginine constituted the largest fraction in the cut end exudate of Cuscuta and presumably appeared to be the major form of transport amino acid. γ-Hydroxyarginine was also a major constituent of the basic amino acids in Cuscuta vines parasitizing host plants from widely separated families, suggesting that this amino acid is a biosynthetic product of the parasite rather than that of the hosts. Also, U-14C arginine was converted to γ-hydroxyarginine by cut Cuscuta vines, suggesting that γ-hydroxyarginine is synthesized de novo from arginine by Cuscuta.
Resumo:
A series of molecular complexes, both co-crystals and salts, of a triazole drug-alprazolam-with carboxylic acids, boric acid, boronic acids, and phenols have been analyzed with respect to heterosynthons present in the crystal structures. In all cases, the triazole ring behaves as an efficient hydrogen bond acceptor with the acidic coformers. The hydrogen bond patterns exhibited with aromatic carboxylic acids were found to depend on the nature and position of the substituents. Being a strong acid, 2,6-dihydroxybenzoic acid forms a salt with alprazolam. With aliphatic dicarboxylic acids alprazolam forms hydrates and the water molecules play a central role in synthon formation and crystal packing. The triazole ring makes two distinct heterosynthons in the molecular complex with boric acid. Boronic acids and phenols form consistent hydrogen bond patterns, and these are seemingly independent of the substitutional effects. Boronic acids form noncentrosymmetric cyclic synthons, while phenols form O-H center dot center dot center dot N hydrogen bonds with the triazole ring. (C) 2010 Wiley-Liss, Inc. and the American Pharmacists Association J Pharm Sci 99:3743-3753, 2010.