245 resultados para Negative mass bubbles


Relevância:

20.00% 20.00%

Publicador:

Resumo:

This paper deals with the thermo-physical changes that a droplet undergoes when it is radiatively heated in a levitated environment. The heat and mass transport model has been developed along with chemical kinetics within a cerium nitrate droplet. The chemical transformation of cerium nitrate to ceria during the process is predicted using Kramers' reaction mechanism which justifies the formation of ceria at a very low temperature as observed in experiments. The rate equation modeled by Kramers is modified suitably to be applicable within the framework of a droplet, and predicts experimental results well in both bulk form of cerium nitrate and in aqueous cerium nitrate droplet. The dependence of dissociation reaction rate on droplet size is determined and the transient mass concentration of unreacted cerium nitrate is reported. The model is validated with experiments both for liquid phase vaporization and chemical reaction. Vaporization and chemical conversion are simulated for different ambient conditions. The competitive effects of sensible heating rate and the rate of vaporization with diffusion of cerium nitrate is seen to play a key role in determining the mass fraction of ceria formed within the droplet. Spatially resolved modeling of the droplet enables the understanding of the conversion of chemical species in more detail.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The mass flow rate, (m) over dot, associated with the lateral outflow of dry, cohesionless granular material through circular orifices of diameter D made in vertical walls of silos was measured experimentally in order to determine also the influence of the wall thickness of the silo, w. Geometrical arguments, based on the outflow happening, are given in order to have a general correlation for (m) over dot embracing both quantities, D and w. The angle of repose appears to be an important characterization factor in these kinds of flows.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Stellar mass black holes (SMBHs), forming by the core collapse of very massive, rapidly rotating stars, are expected to exhibit a high density accretion disk around them developed from the spinning mantle of the collapsing star. A wide class of such disks, due to their high density and temperature, are effective emitters of neutrinos and hence called neutrino cooled disks. Tracking the physics relating the observed (neutrino) luminosity to the mass, spin of black holes (BHs) and the accretion rate ((M) over dot) of such disks, here we establish a correlation between the spin and mass of SMBHs at their formation stage. Our work shows that spinning BHs are more massive than nonspinning BHs for a given (M) over dot. However, slowly spinning BHs can turn out to be more massive than spinning BHs if (M) over dot at their formation stage was higher compared to faster spinning BHs.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

In this paper we calculate the potential for a prolate spheroidal distribution as in a dark matter halo with a radially varying eccentricity. This is obtained by summing up the shell-by-shell contributions of isodensity surfaces, which are taken to be concentric and with a common polar axis and with an axis ratio that varies with radius. Interestingly, the constancy of potential inside a shell is shown to be a good approximation even when the isodensity contours are dissimilar spheroids, as long as the radial variation in eccentricity is small as seen in realistic systems. We consider three cases where the isodensity contours are more prolate at large radii, or are less prolate or have a constant eccentricity. Other relevant physical quantities like the rotation velocity, the net orbital and vertical frequency due to the halo and an exponential disc of finite thickness embedded in it are obtained. We apply this to the kinematical origin of Galactic warp, and show that a prolate-shaped halo is not conducive to making long-lived warps - contrary to what has been proposed in the literature. The results for a prolate mass distribution with a variable axis ratio obtained are general, and can be applied to other astrophysical systems, such as prolate bars, for a more realistic treatment.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

In this paper we study the effective electron mass (EEM) in Nano wires (NWs) of nonlinear optical materials on the basis of newly formulated electron dispersion relation by considering all types of anisotropies of the energy band constants within the framework of k . p formalism. The results for NWs of III-V, ternary and quaternary semiconductors form special cases of our generalized analysis. We have also investigated the EEM in NWs of Bi, IV-VI, stressed Kane type materials, Ge, GaSb and Bi2Te3 by formulating the appropriate 1D dispersion law in each case by considering the influence of energy band constants in the respective cases. It has been found that the 1D EEM in nonlinear optical materials depend on the size quantum numbers and Fermi energy due to the anisotropic spin orbit splitting constant and the crystal field splitting respectively. The 1D EEM is Bi, IV-VI, stressed Kane type semiconductors and Ge also depends on both the Fermi energy and the size quantum numbers which are the characteristic features of such NWs. The EEM increases with increase in concentration and decreasing film thickness and for ternary and quaternary compounds the EEM increases with increase in alloy composition. Under certain special conditions all the results for all the materials get simplified into the well known parabolic energy bands and thus confirming the compatibility test.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

In this Letter, we report the structure activity relationship (SAR) studies on series of positional isomers of 5(6)-bromo-1-(phenyl)sulfonyl]-2-(4-nitrophenoxy)methyl]-1H-benzim idazoles derivatives 7(a-j) and 8(a j) synthesized in good yields and characterized by H-1 NMR, C-13 NMR and mass spectral analyses. The crystal structure of 7a was evidenced by X-ray diffraction study. The newly synthesized compounds were evaluated for their in vitro antibacterial activity against Staphylococcus aureus, (Gram-positive), Escherichia coil and Klebsiella pneumoniae (Gram-negative), antifungal activity against Candida albicans, Aspergillus flavus and Rhizopus sp. and antitubercular activity against Mycobacterium tuberculosis H37Rv, Mycobacterium smegmatis, Mycobacterium fortuitum and MDR-TB strains. The synthesized compounds displayed interesting antimicrobial activity. The compounds 7b, 7e and 7h displayed significant activity against Mycobacterium tuberculosis H37Rv strain.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

This paper reports on the mass transport behavior of infinitely extended, continuous, and very thin metallic films under the influence of electric current. Application of direct current of high densities (> 10(8) A/m(2)) results in visible melting of thin film at only one of the electrodes, and the melt then flows towards the other electrode in a circularly symmetric fashion forming a microscale ring pattern. For the two tested thin film systems, namely Cr and Al, of thicknesses ranging from 4 to 20 nm, the above directional flow consistently occurred from cathode to anode and anode to cathode, respectively. Furthermore, application of alternating electric current results in flow of the liquid material from both the electrodes. The dependence of critical flow behavior parameters, such as flow direction, flow velocity, and evolution of the ring diameter, are experimentally determined. Analytical models based on the principles of electromigration in liquid-phase materials are developed to explain the experimental observations.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

We present a novel scheme where Dirac neutrinos are realized even if lepton number violating Majorana mass terms are present. The setup is the Randall-Sundrum framework with bulk right-handed neutrinos. Bulk mass terms of both Majorana and Dirac type are considered. It is shown that massless zero mode solutions exist when the bulk Dirac mass term is set to zero. In this limit, it is found that the effective 4D small neutrino mass is primarily of Dirac nature, with the Majorana-type contributions being negligible. Interestingly, this scenario is very similar to the one known with flat extra dimensions. Neutrino phenomenology is discussed by fitting both charged lepton masses and neutrino masses simultaneously. A single Higgs localized on the IR brane is highly constrained, as unnaturally large Yukawa couplings are required to fit charged lepton masses. A simple extension with two Higgs doublets is presented, which facilitates a proper fit for the lepton masses.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

In this work, we present a study on the negative differential resistance (NDR) behavior and the impact of various deformations (like ripple, twist, wrap) and defects like vacancies and edge roughness on the electronic properties of short-channel MoS2 armchair nanoribbon MOSFETs. The effect of deformation (3 degrees-7 degrees twist or wrap and 0.3-0.7 angstrom ripple amplitude) and defects on a 10 nm MoS2 ANR FET is evaluated by the density functional tight binding theory and the non-equilibrium Green's function approach. We study the channel density of states, transmission spectra, and the I-D-V-D characteristics of such devices under the varying conditions, with focus on the NDR behavior. Our results show significant change in the NDR peak to valley ratio and the NDR window with such minor intrinsic deformations, especially with the ripple. (C) 2013 AIP Publishing LLC.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Is the Chandrasekhar mass limit for white dwarfs (WDs) set in stone? Not anymore, recent observations of over-luminous, peculiar type Ia supernovae can be explained if significantly super-Chandrasekhar WDs exist as their progenitors, thus barring them to be used as cosmic distance indicators. However, there is no estimate of a mass limit for these super-Chandrasekhar WD candidates yet. Can they be arbitrarily large? In fact, the answer is no! We arrive at this revelation by exploiting the flux freezing theorem in observed, accreting, magnetized WDs, which brings in Landau quantization of the underlying electron degenerate gas. This essay presents the calculations which pave the way for the ultimate (significantly super-Chandrasekhar) mass limit of WDs, heralding a paradigm shift 80 years after Chandrasekhar's discovery.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Heat and mass transfer studies in a calandria based reactor is quite complex both due to geometry and due to the complex mixing flow. It is challenging to devise optimum operating conditions with efficient but safe working range for such a complex configuration. Numerical study known to be very effective is taken up for investigation. In the present study a 3D RANS code with turbulence model has been used to compute the flow fields and to get the heat transfer characteristics to understand certain design parameters of engineering importance. The angle of injection and of the coolant liquid has a large effect on the heat transfer within the reactor.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

We present experimental results on the generation and collapse of multielectron bubbles in liquid helium. By applying voltage pulses to a tungsten tip above the surface of the liquid, millimetre sized deformations were formed. Using high speed photography, we have imaged the disintegration of these deformations into bubbles of sizes ranging from ten to few hundred microns. At temperatures less than 2 K, the bubbles split into smaller bubbles and then disappeared in a time scale of few milliseconds. Smaller bubbles were formed at temperatures around 3 K, but were visible for more than hundreds of milliseconds. Although we have not been able to measure their charge directly, some of these bubbles responded to electric fields, implying these were indeed multielectron bubbles. With the existing theoretical picture, it is not possible to understand the strong dependence of the lifetime of multielectron bubbles on temperature.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The impact of future climate change on the glaciers in the Karakoram and Himalaya (KH) is investigated using CMIP5 multi-model temperature and precipitation projections, and a relationship between glacial accumulation-area ratio and mass balance developed for the region based on the last 30 to 40 years of observational data. We estimate that the current glacial mass balance (year 2000) for the entire KH region is -6.6 +/- 1 Gta(-1), which decreases about sixfold to -35 +/- 2 Gta(-1) by the 2080s under the high emission scenario of RCP8.5. However, under the low emission scenario of RCP2.6 the glacial mass loss only doubles to -12 +/- 2 Gta(-1) by the 2080s. We also find that 10.6 and 27 % of the glaciers could face `eventual disappearance' by the end of the century under RCP2.6 and RCP8.5 respectively, underscoring the threat to water resources under high emission scenarios.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

We clarify important physics issues related to the recently established new mass limit for magnetized white dwarfs which is significantly super-Chandrasekhar. The issues include, justification of high magnetic field and the corresponding formation of stable white dwarfs, contribution of the magnetic field to the total density and pressure, flux freezing, variation of magnetic field and related currents therein. We also attempt to address the observational connection of such highly magnetized white dwarfs.