360 resultados para BICYCLO<2.2.1>HEPT-2-ENE


Relevância:

80.00% 80.00%

Publicador:

Resumo:

The titled complex, obtained by co-crystallization (EtOH/25 degrees C),is apparently the only known complex of the free bases. Its crystal structure, as determined by X-ray diffraction at both 90 K and 313 K, showed that one A-T pair involves a Hoogsteen interaction, and the other a Watson-Crick interaction but only with respect to the adenine unit. The absence of a clear-cut Watson-Crick base pair raises intriguing questions about the basis of the DNA double helix. (C) 2010 Elsevier Ltd. All rights reserved.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

In the structure of the title compound, C27H39N3O3, each of the (4-oxopiperidin-1-yl)methyl residues adopts a flattened chair conformation (with the N and carbonyl groups being oriented to either,side of the central C-4 plane) and they occupy positions approximatelym orthogonal to the central benzene ring [C-benzene-C-C-methylene-N torsion angles 103.4 (2), -104.4 (3) and 71.9 (3)degrees]; further, two of these residues are oriented to one side of the central benzene ring with the third to the other side. In the crystal packing, supramolecular layers in the ab plane are sustained by C-H center dotcenter dot center dot O interactions.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

The title molecule, C5H7N3O2, has an almost planar conformation, with a maximum deviation of 0.043 (3) angstrom, except for the methyl H atoms. In the crystal structure, intermolecular C-H center dot center dot center dot O hydrogen bonds link the molecules into layers parallel to the bc plane. Intermolecular pi-pi stacking interactions [centroid-centroid distances = 3.685 (2) and 3.697 (2) angstrom] are observed between the parallel triazole rings.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

Nickel(II) complexes of 1-benzyl-2-phenylbenzimidazole (BPBI) of the general formula [Ni(BPBI)2X2](X=Cl-, Br-, NCS- or NO3-) have been prepared and their magnetic moments, i.r. and electronic spectra studied. [Ni(BPBI)2Cl2] has a pseudotetrahedral structure while [Ni(BPBI)2 Br2] exists as square planar and speudotetrahedral isomers. [Ni(BPBI)2I2] and [NI(BPBI)2(NCS)2] have square planar stereochemistry. The nitrato complex [Ni(BPBI)2(NO)3)2] exists in two different octahedral modifications in the solid state.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

The crystal and molecular structure has been determined by the heavy-atom method and refined by the least-squares procedure to R= 8"3 % for 2033 photographically observed reflexions. The compound crystallizes in the space group P]" with two molecules in a unit cell of dimensions a = 11"68 + 0-02, b = 12"91 +0"02, c= 10"43+0"02/~, e= 114"7+ 1, fl=90-2+ 1 and 7,= 118.3+ 1 °. The unit cell also contains one molecule of the solvent, benzene. The 'cage' part of the molecule exhibits a large number of elongated bonds and strained internal valency angles. The bridgehead angle in the bicyclic heptane ring system is 89 °. The acetate group at C(16) and the methyl group at C(15) are cis to each other.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

Thermal rearrangement of diethylamino5-(m methoxyphenoxy)-pent-2-yne (3) gives 1-(m-methexyphenoxy)-pent-3,4-diene (14) in about 8% yield. Hydration of the latter yields 1-(m-methoxyphenoxy)-pentan-4-one (6), which has been synthesised by an unambiguous route. A mechanism of formation of the allene (14) from the amine (3) has been suggested.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

In the title compound, C16H13ClN2O, the quinoline ring system is approximately planar [maximum deviation 0.021 (2) angstrom] and forms a dihedral angle of 85.93 (6)degrees with the pyridone ring. Intermolecular C-H center dot center dot center dot O hydrogen bonding, together with weak C-H center dot center dot center dot pi and pi-pi interactions [centroid-to-centroid distances 3.5533 (9) and 3.7793 (9) angstrom], characterize the crystal structure.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

In the title molecule, C21H15ClN4S, the triazoloisoquinoline ring system is approximately planar, with an r.m.s. deviation of 0.054 (2) angstrom and a maximum deviation of 0.098 (2) angstrom from the mean plane for the triazole ring C atom that is bonded to the thiazole ring. The thiazole and benzene rings are twisted by 66.36 (7) and 56.32 (7)degrees respectively, with respect to the mean plane of the triazoloisoquinoline ring system. In the crystal structure, molecules are linked by intermolecular C-H center dot center dot center dot N interactions along the a axis. The molecular conformation is stabilized by a weak intramolecular pi-pi interaction involving the thiazole and benzene rings, with a centroid-centroid distance of 3.6546 (11) angstrom . In addition, two other intermolecular pi-pi stacking interactions are observed, between the triazole and benzene rings and between the dihydropyridine and benzene rings [centroid-centroid distances = 3.6489 (11) and 3.5967 (10) angstrom, respectively].

Relevância:

80.00% 80.00%

Publicador:

Resumo:

The X-ray structure and electron density distribution of ethane-1,2-diol (ethylene glycol), obtained at a resolution extending to 1.00 Å−1 in sin θ/λ (data completion = 100% at 100 K) by in situ cryocrystallization technique is reported. The diol is in the gauche (g′Gt) conformation with the crystal structure stabilised by a network of inter-molecular hydrogen bonds. In addition to the well-recognized O–H···O hydrogen bonds there is topological evidence for C–H···O inter-molecular interactions. There is no experimental electron density based topological evidence for the occurrence of an intra-molecular hydrogen bond. The O···H spacing is not, vert, similar0.45 Å greater than in the gas-phase with an O–H···O angle close to 90°, calling into question the general assumption that the gauche conformation of ethane-1,2-diol is stabilised by the intra-molecular oxygen–hydrogen interaction.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

Calreticulin is a lectin-like molecular chaperone of the endoplasmic reticulum in eukaryotes. Its interaction with N-glycosylated polypeptides is mediated by the glycan, Glc(1)Man(9)GlcNAc(2), present on the target glycoproteins. In this work, binding of monoglucosyl IgG (chicken) substrate to calreticulin has been studied using real time association kinetics of the interaction with the biosensor based on surface plasmon resonance (SPR). By SPR, accurate association and dissociation rate constants were determined, and these yielded a micromolar association constant. The nature of reaction was unaffected by immobilization of either of the reactants. The Scatchard analysis values for K-a agreed web crith the one obtained by the ratio k(1)/k(-1). The interaction was completely inhibited by free oligosaccharide, Glc(1)Man(9)GlcNAc(2), whereas Man(9)GlcNAc(2) did not bind to the calreticulin-substrate complex, attesting to the exquisite specificity of this interaction. The binding of calreticulin to IgG was used for the development of immunoassay and the relative affinity of the lectin-substrate association was indirectly measured. The values are in agreement with those obtained with SPR. Although the reactions are several orders of magnitude slower than the diffusion controlled processes, the data are qualitatively and quantitatively consistent with single-step bimolecular association and dissociation reaction. Analyses of the activation parameters indicate that reaction is enthalpically driven and does not involve a highly ordered transition state. Based on these data, the mechanism of its chaperone activity is briefly discussed.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

For p x n complex orthogonal designs in k variables, where p is the number of channels uses and n is the number of transmit antennas, the maximal rate L of the design is asymptotically half as n increases. But, for such maximal rate codes, the decoding delay p increases exponentially. To control the delay, if we put the restriction that p = n, i.e., consider only the square designs, then, the rate decreases exponentially as n increases. This necessitates the study of the maximal rate of the designs with restrictions of the form p = n+1, p = n+2, p = n+3 etc. In this paper, we study the maximal rate of complex orthogonal designs with the restrictions p = n+1 and p = n+2. We derive upper and lower bounds for the maximal rate for p = n+1 and p = n+2. Also for the case of p = n+1, we show that if the orthogonal design admit only the variables, their negatives and multiples of these by root-1 and zeros as the entries of the matrix (other complex linear combinations are not allowed), then the maximal rate always equals the lower bound.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

Single crystals of a symmetrically substituted molecule, 1,3,5-triazine-2,4,6-triaminehexaacetic acid, (TTHA) and its Ca2+ salt have been synthesized, the analysis of which reveals the existence of novel channel type cavities and helical packing organizations in the crystals.