402 resultados para Angola Diapir Field


Relevância:

20.00% 20.00%

Publicador:

Resumo:

This article is a review of our work related to Raman studies of single layer and bilayer graphenes as a function Fermi level shift achieved by electrochemically top gating a field effect transistor. Combining the transport and in situ Raman studies of the field effect devices, a quantitative understanding is obtained of the phonon renormalization due to doping of graphene. Results are discussed in the light of time dependent perturbation theory, with electron phonon coupling parameter as an input from the density functional theory. It is seen that phonons near and Gamma and K points of the Brillouin zone are renormalized very differently by doping. Further, Gamma-phonon renormalization is different in bilayer graphene as compared to single layer, originating from their different electronic band structures near the zone boundary K-point. Thus Raman spectroscopy is not only a powerful probe to characterize the number of layers and their quality in a graphene sample, but also to quantitatively evaluate electron phonon coupling required to understand the performance of graphene devices.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

In this paper, we propose a novel S/D engineering for dual-gated Bilayer Graphene (BLG) Field Effect Transistor (FET) using doped semiconductors (with a bandgap) as source and drain to obtain unipolar complementary transistors. To simulate the device, a self-consistent Non-Equilibrium Green's Function (NEGF) solver has been developed and validated against published experimental data. Using the simulator, we predict an on-off ratio in excess of 10(4) and a subthreshold slope of similar to 110mV/decade with excellent scalability and current saturation, for a 20nm gate length unipolar BLG FET. However, the performance of the proposed device is found to be strongly dependent on the S/D series resistance effect. The obtained results show significant improvements over existing reports, marking an important step towards bilayer graphene logic devices.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Pure Y2O3 and Y2O3-ZrO2 solid solutions have been prepared by melt atomization and by pyrolysis of nitrate solutions. Extended solubility is readily achieved in both techniques for the entire composition range investigated: melts with 0-30% ZrO2 and precursors with 0-50% ZrO2. However, solidification of under cooled droplets yields almost exclusively single phase powders with the structure of cubic yttria (D5(3)). In contrast, the pyrolysis route leads to a sequence of metastable microstructures beginning with a nanocrystalline disordered fluorite-based (C1) solid solution. Further heating leads to the evolution of much larger (micron size) flake crystals with a {001} texture, concurrent with partial ordering of the oxygen ions to the sites occupied in the D5(3) structure. The driving force for ordering and the rate of grain growth decrease with increasing ZrO2 addition. Abrupt heating to high temperatures or electron irradiation can induce ordering without substantial grain growth. There is no significant reduction in porosity during the recrystallization, which with the other observations suggests that grain growth is driven by the free energy available for the ordering transformation from fluorite to the yttria structure. This route offers opportunities for single crystal thin film development at relatively low processing temperatures.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

We present analytic results to show that the Schwinger-boson hole-fermion mean-field state exhibits non-Fermi liquid behavior due to spin-charge separation. The physical electron Green's function consists of three additive components. (a) A Fermi-liquid component associated with the bose condensate. (b) A non-Fermi liquid component which has a logarithmic peak and a long tail that gives rise to a linear density of states that is symmetric about the Fermi level and a momentum distribution function with a logarithmic discontinuity at the Fermi surface. (c) A second non-Fermi liquid component associated with the thermal bosons which leads to a constant density of states. It is shown that zero-point fluctuations associated with the spin-degrees of freedom are responsible for the logarithmic instabilities and the restoration of particle-hole symmetry close to the Fermi surface.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The complete amino acid sequence of two non identical subunits of the glucose/mannose-specific lectin from Dolichos lab lab (field bean) has been determined by sequential Edman analyses of the intact subunits and peptides derived by enzymatic and chemical cleavage. Peptides were purified by reverse phase high performance liquid chromatography and ion pair chromatography. The D. lab lab lectin is a glycoprotein having two polypeptide chains of 132 and 105 amino acid residues. The amino acid sequence of the D. Lab lab lectin is compared with the various lectins of the family Leguminosae. The D. lab lab lectin is the only species of the tribe Phaseoleae that contains two nonidentical subunits of almost equal size and that shows a specificity to glucose/ mannose. The lectin shows a greater homology to the glucose/mannose specific lectins, especially concanavalin A. The unique subunit architecture of the D. lab lab lectin indicates the presence of new post translational cleavage sites.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Nonclassicality in the sense of quantum optics is a prerequisite for entanglement in multimode radiation states. In this work we bring out the possibilities of passing from the former to the latter, via action of classicality preserving systems like beam splitters, in a transparent manner. For single-mode states, a complete description of nonclassicality is available via the classical theory of moments, as a set of necessary and sufficient conditions on the photon number distribution. We show that when the mode is coupled to an ancilla in any coherent state, and the system is then acted upon by a beam splitter, these conditions turn exactly into signatures of negativity under partial transpose (NPT) entanglement of the output state. Since the classical moment problem does not generalize to two or more modes, we turn in these cases to other familiar sufficient but not necessary conditions for nonclassicality, namely the Mandel parameter criterion and its extensions. We generalize the Mandel matrix from one-mode states to the two-mode situation, leading to a natural classification of states with varying levels of nonclassicality. For two-mode states we present a single test that can, if successful, simultaneously show nonclassicality as well as NPT entanglement. We also develop a test for NPT entanglement after beam-splitter action on a nonclassical state, tracing carefully the way in which it goes beyond the Mandel nonclassicality test. The result of three-mode beam-splitter action after coupling to an ancilla in the ground state is treated in the same spirit. The concept of genuine tripartite entanglement, and scalar measures of nonclassicality at the Mandel level for two-mode systems, are discussed. Numerous examples illustrating all these concepts are presented.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

We use the Density Matrix Renormalization Group and the Abelian bosonization method to study the effect of density on quantum phases of one-dimensional extended Bose-Hubbard model. We predict the existence of supersolid phase and also other quantum phases for this system. We have analyzed the role of extended range interaction parameters on solitonic phase near half-filling. We discuss the effects of dimerization in nearest neighbor hopping and interaction as well as next nearest neighbor interaction on the plateau phase at half-filling.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

We have calculated the binding energy of a hydrogenic donor in a quantum well with potential shape proportional to \z\(2/3) as a function of the width of the quantum well and the barrier height under an applied uniform magnetic field along the a axis. As the well width decreases, the binding energy increases initially up to a critical well width (which is nearly the same for all magnetic fields) at which there is a turnover. The results are qualitatively similar to those of a hydrogenic donor in a rectangular well. We have also calculated [rho(2)](1/2) and [z(2)](1/2) for the donor electron. [rho(2)](1/2) is found to be strongly dependent on the magnetic field for a given well width and weakly dependent on the well width and the barrier height, for a given value of magnetic field [z(2)](1/2) is weakly dependent on the applied magnetic field. The probability of finding the donor electron inside the well shows a rapid decrease as the well width is reduced at nearly the well width at which the binding energy shows a maximum.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Interest in the applicability of fluctuation theorems to the thermodynamics of single molecules in external potentials has recently led to calculations of the work and total entropy distributions of Brownian oscillators in static and time-dependent electromagnetic fields. These calculations, which are based on solutions to a Smoluchowski equation, are not easily extended to a consideration of the other thermodynamic quantity of interest in such systems-the heat exchanges of the particle alone-because of the nonlinear dependence of the heat on a particle's stochastic trajectory. In this paper, we show that a path integral approach provides an exact expression for the distribution of the heat fluctuations of a charged Brownian oscillator in a static magnetic field. This approach is an extension of a similar path integral approach applied earlier by our group to the calculation of the heat distribution function of a trapped Brownian particle, which was found, in the limit of long times, to be consistent with experimental data on the thermal interactions of single micron-sized colloids in a viscous solvent.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Predictions of two popular closed-form models for unsaturated hydraulic conductivity (K) are compared with in situ measurements made in a sandy loam field soil. Whereas the Van Genuchten model estimates were very close to field measured values, the Brooks-Corey model predictions were higher by about one order of magnitude in the wetter range. Estimation of parameters of the Van Genuchten soil moisture characteristic (SMC) equation, however, involves the use of non-linear regression techniques. The Brooks-Corey SMC equation has the advantage of being amenable to application of linear regression techniques for estimation of its parameters from retention data. A conversion technique, whereby known Brooks-Corey model parameters may be converted into Van Genuchten model parameters, is formulated. The proposed conversion algorithm may be used to obtain the parameters of the preferred Van Genuchten model from in situ retention data, without the use of non-linear regression techniques.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The life-history of Neurospora in nature has remained largely unknown. The present study attempts to remedy this. The following conclusions are based on observation of Neurospora on fire-scorched sugar cane in agricultural fields, and reconstruction experiments using a colour mutant to inoculate sugar cane burned in the laboratory. The fungus persists in soil as heat-resistant dormant ascospores. These are activated by a chemical(s) released into soil from the burnt substrate. The chief diffusible activator of ascospores is furfural and the germinating ascospores infect the scorched substrate. An invasive mycelium grows progressively upwards inside the juicy sugar cane and produces copious macroconidia externally through fire-induced openings formed in the plant tissue, or by the mechanical rupturing of the plant epidermal tissue by the mass of mycelium. The loose conidia are dispersed by wind and/or foraged by microfauna. It is suggested that the constant production of macroconidia, and their ready dispersal, serve a physiological role: to drain the substrate of minerals and soluble sugars, thereby creating nutritional conditions which stimulate sexual reproduction by the fungus. Sexual reproduction in the sugar-depleted cellulosic substrate occurs after macroconidiation has ceased totally and is favoured by the humid conditions prevailing during the monsoon rains. Profuse microconidiophores and protoperithecia are produced simultaneously in the pockets below the loosened epidermal tissue. Presumably protoperithecia are fertilized by microconidia which are possibly transmitted by nematodes active in the dead plant tissue. Mature perithecia release ascospores in situ which are passively liberated in the soil by the disintegration of the plant material and are, apparently, distributed by rain or irrigation water.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

We assume the large-scale diffuse magnetic field of the Sun to originate from the poloidal component of a dynamo operating at the base of the convection zone, whereas the sunspots are due to the toroidal component. The evolution of the poloidal component is studied to model the poleward migration of the diffuse field seen on the solar surface and the polar reversal at the time of sunspot maxima (Dikpati and Choudhuri 1994, 1995).

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Nanoporous structures are widely used for many applications and hence it Is important to investigate their thermal stability. We study the stability of spherical nanoporous aggregates using phase-field simulations that explore systematically the effect of grain boundary diffusion, surface diffusion, and grain boundary mobility on the pathways for microstructural evolution. Our simulations for different combinations of surface and GB diffusivity and GB mobility show four distinct microstructural pathways en route to 100% density: multiple dosed pores, hollow shells, hollow shells with a core, and multiple interconnected pores. The microstructures from our simulations are consistent with experimental observations in several different systems. Our results have important implications for rational synthesis of hollow nanostructures or aggregates with open pores, and for controlling the stability of nanoporous aggregates that are widely used for many applications.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

We report here an easily reversible set-reset process in a new Ge15Te83Si2 glass that could be a promising candidate for phase change random access memory applications. The I-V characteristics of the studied sample show a comparatively low threshold electric field (E-th) of 7.3 kV/cm. Distinct differences in the type of switching behavior are achieved by means of controlling the on state current. It enables the observation of a threshold type for less than 0.7 mA beyond memory type (set) switching. The set and reset processes have been achieved with a similar magnitude of 1 mA, and with a triangular current pulse for the set process and a short duration rectangular pulse of 10 msec width for the reset operation. Further, a self-resetting effect is seen in this material upon excitation with a saw-tooth/square pulse, and their response of leading and trailing edges are discussed. About 6.5 x 10(4) set-reset cycles have been undertaken without any damage to the device. (C) 2011 American Institute of Physics. doi: 10.1063/1.3574659]