291 resultados para porous space
Resumo:
Distributed space time coding for wireless relay networks where the source, the destination and the relays have multiple antennas have been studied by Jing and Hassibi. In this set up, the transmit and the receive signals at different antennas of the same relay are processed and designed independently, even though the antennas are colocated. In this paper, a wireless relay network with single antenna at the source and the destination and two antennas at each of the R relays is considered. In the first phase of the two-phase transmission model, a T -length complex vector is transmitted from the source to all the relays. At each relay, the inphase and quadrature component vectors of the received complex vectors at the two antennas are interleaved before processing them. After processing, in the second phase, a T x 2R matrix codeword is transmitted to the destination. The collection of all such codewords is called Co-ordinate interleaved distributed space-time code (CIDSTC). Compared to the scheme proposed by Jing-Hassibi, for T ges AR, it is shown that while both the schemes give the same asymptotic diversity gain, the CIDSTC scheme gives additional asymptotic coding gain as well and that too at the cost of negligible increase in the processing complexity at the relays.
Resumo:
A construction of a new family of distributed space time codes (DSTCs) having full diversity and low Maximum Likelihood (ML) decoding complexity is provided for the two phase based cooperative diversity protocols of Jing-Hassibi and the recently proposed Generalized Non-orthogonal Amplify and Forward (GNAF) protocol of Rajan et al. The salient feature of the proposed DSTCs is that they satisfy the extra constraints imposed by the protocols and are also four-group ML decodable which leads to significant reduction in ML decoding complexity compared to all existing DSTC constructions. Moreover these codes have uniform distribution of power among the relays as well as in time. Also, simulations results indicate that these codes perform better in comparison with the only known DSTC with the same rate and decoding complexity, namely the Coordinate Interleaved Orthogonal Design (CIOD). Furthermore, they perform very close to DSTCs from field extensions which have same rate but higher decoding complexity.
Resumo:
An overview of space-time code construction based on cyclic division algebras (CDA) is presented. Applications of such space-time codes to the construction of codes optimal under the diversity-multiplexing gain (D-MG) tradeoff, to the construction of the so-called perfect space-time codes, to the construction of optimal space-time codes for the ARQ channel as well as to the construction of codes optimal for the cooperative relay network channel are discussed. We also present a construction of optimal codes based on CDA for a class of orthogonal amplify and forward (OAF) protocols for the cooperative relay network
Resumo:
A three-level inverter produces six active vectors, each of normalized magnitudes 1, 0.866, and 0.5, besides a zero vector. The vectors of relative length 0.5 are termed pivot vectors.The three nearest voltage vectors are usually used to synthesize the reference vector. In most continuous pulsewidth-modulation(PWM) schemes, the switching sequence begins from a pivot vector and ends with the same pivot vector. Thus, the pivot vector is applied twice in a subcycle or half-carrier cycle. This paper proposes and investigates alternative switching sequences, which use the pivot vector only once but employ one of the other two vectors twice within the subcycle. The total harmonic distortion(THD) in the fundamental line current pertaining to these novel sequences is studied theoretically as well as experimentally over the whole range of modulation. Compared with centered space vector PWM, two of the proposed sequences lead to reduced THD at high modulation indices at a given average switching frequency.
Resumo:
Condensation of water droplets during rapid evaporation of a polymer solution, under humid conditions, has been known to generate uniformly porous polymer films. Similar porous films are also formed when a solution of the polymer in THF containing small amounts of water, is allowed to evaporate rapidly under air flow; this suggests that water droplets may be formed during the final stages of film formation. In the presence of added surfactants, the interface of water droplets could become lined with the surfactants and consequently the internal walls of the pores generated, upon removal of the water, could become decorated with the hydrophilic head groups of the surfactant molecules. In a series of carefully designed experiments, we have examined the effect of added surfactants, both anionic and cationic, on the formation of porous PMMA films; the films were prepared by evaporating a solution of the polymer in THF containing controlled amounts of aqueous surfactant solutions. We observed that the average size of the pores decreases with increasing surfactant concentration, while it increases with increasing amounts of added water. The size of the pores and their distribution were examined using AFM and IR imaging methods. Although IR imaging possessed inadequate resolution to confirm the presence of surfactants at the pore surface, exchange of the inorganic counterion, such as the sodium-ion of SDS, with suitable ionic organic dyes permitted the unequivocal demonstration of the presence of the surfactants at the interface by the use of confocal fluorescence microscopy.
Resumo:
This paper presents a method of partial automation of specification based regression testing, which we call ESSE (Explicit State Space Enumeration). The first step in ESSE method is the extraction of a finite state model of the system making use of an already tested version of the system under test (SUT). Thereafter, the finite state model thus obtained is used to compute good test sequences that can be used to regression test subsequent versions of the system. We present two new algorithms for test sequence computation - both based on our finite state model generated by the above method. We also provide the details and results of the experimental evaluation of ESSE method. Comparison with a practically used random-testing algorithm has shown substantial improvements.
Resumo:
Electron paramagnetic resonance studies under ambient conditions of boron‐doped porous silicon show anisotropic Zeeman (g) and hyperfine (A) tensors, signaling localization of the charge carriers due to quantum confinement.
Resumo:
The diversity order and coding gain are crucial for the performance of a multiple antenna communication system. It is known that space-time trellis codes (STTC) can be used to achieve these objectives. In particular, we can use STTCs to obtain large coding gains. Many attempts have been made to construct STTCs which achieve full-diversity and good coding gains, though a general method of construction does not exist. Delay diversity code (rate-1) is known to achieve full-diversity, for any number of transmit antennas and any signal set, but does not give a good coding gain. A product distance code based delay diversity scheme (Tarokh, V. et al., IEEE Trans. Inform. Theory, vol.44, p.744-65, 1998) enables one to improve the coding gain and construct STTCs for any given number of states using coding in conjunction with delay diversity; it was stated as an open problem. We achieve such a construction. We assume a shift register based model to construct an STTC for any state complexity. We derive a sufficient condition for this STTC to achieve full-diversity, based on the delay diversity scheme. This condition provides a framework to do coding in conjunction with delay diversity for any signal constellation. Using this condition, we provide a formal rate-1 STTC construction scheme for PSK signal sets, for any number of transmit antennas and any given number of states, which achieves full-diversity and gives a good coding gain.
Resumo:
In the world of high performance computing huge efforts have been put to accelerate Numerical Linear Algebra (NLA) kernels like QR Decomposition (QRD) with the added advantage of reconfigurability and scalability. While popular custom hardware solution in form of systolic arrays can deliver high performance, they are not scalable, and hence not commercially viable. In this paper, we show how systolic solutions of QRD can be realized efficiently on REDEFINE, a scalable runtime reconfigurable hardware platform. We propose various enhancements to REDEFINE to meet the custom need of accelerating NLA kernels. We further do the design space exploration of the proposed solution for any arbitrary application of size n × n. We determine the right size of the sub-array in accordance with the optimal pipeline depth of the core execution units and the number of such units to be used per sub-array.
Resumo:
We study the time-dependent transitions of a quantum-forced harmonic oscillator in noncommutative R(1,1) perturbatively to linear order in the noncommutativity theta. We show that the Poisson distribution gets modified, and that the vacuum state evolves into a `squeezed' state rather than a coherent state. The time evolutions of uncertainties in position and momentum in vacuum are also studied and imply interesting consequences for modeling nonlinear phenomena in quantum optics.