184 resultados para Silicon-on-Insulator (SOI)


Relevância:

30.00% 30.00%

Publicador:

Resumo:

CdTe thin films of 500 thickness prepared by thermal evaporation technique were analyzed for leakage current and conduction mechanisms. Metal-insulator-metal (MIM) capacitors were fabricated using these films as a dielectric. These films have many possible applications, such as passivation for infrared diodes that operate at low temperatures (80 K). Direct-current (DC) current-voltage (I-V) and capacitance-voltage (C-V) measurements were performed on these films. Furthermore, the films were subjected to thermal cycling from 300 K to 80 K and back to 300 K. Typical minimum leakage currents near zero bias at room temperature varied between 0.9 nA and 0.1 mu A, while low-temperature leakage currents were in the range of 9.5 pA to 0.5 nA, corresponding to resistivity values on the order of 10(8) a''broken vertical bar-cm and 10(10) a''broken vertical bar-cm, respectively. Well-known conduction mechanisms from the literature were utilized for fitting of measured I-V data. Our analysis indicates that the conduction mechanism in general is Ohmic for low fields < 5 x 10(4) V cm(-1), while the conduction mechanism for fields > 6 x 10(4) V cm(-1) is modified Poole-Frenkel (MPF) and Fowler-Nordheim (FN) tunneling at room temperature. At 80 K, Schottky-type conduction dominates. A significant observation is that the film did not show any appreciable degradation in leakage current characteristics due to the thermal cycling.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

The Radio Interference (RI) from electric power transmission line hardware, if not controlled, poses serious electromagnetic interference to system in the vicinity. The present work mainly concerns with the RI from the insulator string along with the associated line hardware. The laboratory testing for the RI levels are carried out through the measurement of the conducted radio interference levels. However such measurements do not really locate the coronating point, as well as, the mode of corona. At the same time experience shows that it is rather difficult to locate the coronating points by mere inspection. After a thorough look into the intricacies of the problem, it is ascertained that the measurement of associated ground end currents could give a better picture of the prevailing corona modes and their intensities. A study on the same is attempted in the present work. Various intricacies of the problem,features of ground end current pulses and its correlation with RI are dealt with. Owing to the complexity of such experimental investigations, the study made is not fully complete nevertheless it seems to be first of its kind.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Ceramic/Porcelain insulators are widely used in power transmission lines to provide mechanical support for High voltage conductors in addition to withstand electrical stresses. As a result of lightning, switching or temporary over voltages that could initiate flashover under worst weather conditions, and to operate within interference limits. Given that the useful life in service of the individual insulator elements making up the insulator strings is hard to predict, they must be verified periodically to ensure that adequate line reliability is maintained at all times. Over the years utilities have adopted few methods to detect defective discs in a string, subsequently replacement of the faulty discs are being carried out for smooth operation. But, if the insulator is found to be defective in a string at some location that may not create any changes in the field configuration, there is no need to replace to avoid manpower and cost of replacement. Due to deficiency of electric field data for the existing string configuration, utilities are forced to replace the discs which may not be essentially required. Hence, effort is made in the present work to simulate the potential and electric field along the normal and with faults induced discs in a string up to 765 kV system voltages using Surface Charge Simulation Method (SCSM). A comparison is made between simulated results, experimental and field data and it was found that the computed results are quite acceptable and useful.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

In this paper, we address a physics based closed form model for the energy band gap (E-g) and the transport electron effective mass in relaxed and strained 100] and 110] oriented rectangular Silicon Nanowire (SiNW). Our proposed analytical model along 100] and 110] directions are based on the k.p formalism of the conduction band energy dispersion relation through an appropriate rotation of the Hamiltonian of the electrons in the bulk crystal along 001] direction followed by the inclusion of a 4 x 4 Luttinger Hamiltonian for the description of the valance band structure. Using this, we demonstrate the variation in Eg and the transport electron effective mass as function of the cross-sectional dimensions in a relaxed 100] and 110] oriented SiNW. The behaviour of these two parameters in 100] oriented SiNW has further been studied with the inclusion of a uniaxial strain along the transport direction and a biaxial strain, which is assumed to be decomposed from a hydrostatic deformation along 001] with the former one. In addition, the energy band gap and the effective mass of a strained 110] oriented SiNW has also been formulated. Using this, we compare our analytical model with that of the extracted data using the nearest neighbour empirical tight binding sp(3)d(5)s* method based simulations and has been found to agree well over a wide range of device dimensions and applied strain. (C) 2012 Elsevier Ltd. All rights reserved.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

The substrate effect on InN nanostructures grown by droplet epitaxy has been studied. InN nanostructures were fabricated on Si(111), silicon nitride/Si(111), AlN/Si(111) and Ge(100) substrates by droplet epitaxy using an RF plasma nitrogen source. The morphologies of InN nanostructures were investigated by field emission scanning electron microscopy (FESEM). The chemical bonding configurations of InN nanostructures were examined by x-ray photoelectron spectroscopy (XPS). Photoluminescence spectrum slightly blue shifted compared to the bulk InN, indicating a strong Burstein-Moss effect due to the presence of high electron concentration in the InN dots.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

We report on the synthesis, microstructure and thermal expansion studies on Ca0 center dot 5 + x/2Sr0 center dot 5 + x/2Zr4P6 -aEuro parts per thousand 2x Si-2x O-24 (x = 0 center dot 00 to 1 center dot 00) system which belongs to NZP family of low thermal expansion ceramics. The ceramics synthesized by co-precipitation method at lower calcination and the sintering temperatures were in pure NZP phase up to x = 0 center dot 37. For x a parts per thousand yen 0 center dot 5, in addition to NZP phase, ZrSiO4 and Ca2P2O7 form as secondary phases after sintering. The bulk thermal expansion behaviour of the members of this system was studied from 30 to 850 A degrees C. The thermal expansion coefficient increases from a negative value to a positive value with the silicon substitution in place of phosphorous and a near zero thermal expansion was observed at x = 0 center dot 75. The amount of hysteresis between heating and cooling curves increases progressively from x = 0 center dot 00 to 0 center dot 37 and then decreases for x > 0 center dot 37. The results were analysed on the basis of formation of the silicon based glassy phase and increase in thermal expansion anisotropy with silicon substitution.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Motivated by experiments on Josephson junction arrays in a magnetic field and ultracold interacting atoms in an optical lattice in the presence of a ``synthetic'' orbital magnetic field, we study the ``fully frustrated'' Bose-Hubbard model and quantum XY model with half a flux quantum per lattice plaquette. Using Monte Carlo simulations and the density matrix renormalization group method, we show that these kinetically frustrated boson models admit three phases at integer filling: a weakly interacting chiral superfluid phase with staggered loop currents which spontaneously break time-reversal symmetry, a conventional Mott insulator at strong coupling, and a remarkable ``chiral Mott insulator'' (CMI) with staggered loop currents sandwiched between them at intermediate correlation. We discuss how the CMI state may be viewed as an exciton condensate or a vortex supersolid, study a Jastrow variational wave function which captures its correlations, present results for the boson momentum distribution across the phase diagram, and consider various experimental implications of our phase diagram. Finally, we consider generalizations to a staggered flux Bose-Hubbard model and a two-dimensional (2D) version of the CMI in weakly coupled ladders.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Ingots with compositions CrSi2-x (with 0 < x < 0.1) were synthesized by vacuum arc melting followed by uniaxial hot pressing for densification. This paper reports the temperature and composition dependence of the electrical resistivity, Seebeck coefficient, and thermal conductivity of CrSi2-x samples in the temperature range of 300 K to 800 K. The silicon-deficient samples exhibited substantial reductions in resistivity and Seebeck coefficient over the measured temperature range due to the formation of metallic secondary CrSi phase embedded in the CrSi2 matrix phase. The thermal conductivity was seen to exhibit a U-shaped curve with respect to x, exhibiting a minimum value at the composition of x = 0.04. However, the limit of the homogeneity range of CrSi2 suppresses any further decrease of the lattice thermal conductivity. As a consequence, the maximum figure of merit of ZT = 0.1 is obtained at 650 K for CrSi1.98.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Kinetically frustrated bosons at half filling in the presence of a competing nearest-neighbor repulsion support a wide supersolid regime on the two-dimensional triangular lattice. We study this model on a two-leg ladder using the finite-size density-matrix renormalization-group method, obtaining a phase diagram which contains three phases: a uniform superfluid (SF), an insulating charge density wave (CDW) crystal, and a bond ordered insulator (BO). We show that the transitions from SF to CDW and SF to BO are continuous in nature, with critical exponents varying continuously along the phase boundaries, while the transition from CDW to BO is found to be first order. The phase diagram is also found to contain an exactly solvable Majumdar Ghosh point, and reentrant SF to CDW phase transitions.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Gd2O3-based metal-insulator-metal capacitors have been characterized with single layer (Gd2O3) and bilayer (Gd2O3/Eu2O3 and Eu2O3/Gd2O3) stacks for analog and DRAM applications. Although single layer Gd2O3 capacitors provide highest capacitance density (15 fF/mu m(2)), they suffer from high leakage current density, poor capacitance density-voltage linearity, and reliability. The stacked dielectrics help to reduce leakage current density (1.2x10(-5) A/cm(2) and 2.7 x 10(-5) A/cm(2) for Gd2O3/Eu2O3 and Eu2O3/Gd2O3, respectively, at -1 V), improve quadratic voltage coefficient of capacitance (331 ppm/V-2 and 374 ppm/V-2 for Gd2O3/Eu2O3 and Eu2O3/Gd2O3, respectively, at 1 MHz), and improve reliability, with a marginal reduction in capacitance density. This is attributed to lower trap heights as determined from Poole-Frenkel conduction mechanism, and lower defect density as determined from electrode polarization model.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Managing heat produced by computer processors is an important issue today, especially when the size of processors is decreasing rapidly while the number of transistors in the processor is increasing rapidly. This poster describes a preliminary study of the process of adding carbon nanotubes (CNTs) to a standard silicon paste covering a CPU. Measurements were made in two rounds of tests to compare the rate of cool-down with and without CNTs present. The silicon paste acts as an interface between the CPU and the heat sink, increasing the heat transfer rate away from the CPU. To the silicon paste was added 0.05% by weight of CNTs. These were not aligned. A series of K-type thermocouples was used to measure the temperature as a function of time in the vicinity of the CPU, following its shut-off. An Omega data acquisition system was attached to the thermocouples. The CPU temperature was not measured directly because attachment of a thermocouple would have prevented its automatic shut-off A thermocouple in the paste containing the CNTs actually reached a higher temperature than the standard paste, an effect easily explained. But the rate of cooling with the CNTs was about 4.55% better.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Silicon nanowires were grown on Si substrates by electron beam evaporation (EBE) was demonstrated using Indium as an alternate catalyst to gold. We have studied the effect of substrate (growth) temperature, deposition time on the growth of nanowires. It was observed that a narrow temperature window from 300 degrees C to 400 degrees C for the nanowires growth. At growth temperature >= 400 degrees C suppression of nanowires growth was observed due to evaporation of catalyst particle. It is also observed that higher deposition times also leading to the absence of nanowire growth as well as uncatalyzed deposition on the nanowires side walls due to limited surface diffusion of ad atoms and catalyst evaporation.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

The design and analysis of an optical read-out scheme based on a grated waveguide (GWG) resonator for interrogating microcantilever sensor arrays is presented. The optical system consisting of a micro cantilever monolithically integrated in proximity to a grated waveguide (GWG), is realized in silicon optical bench platform. The mathematical analysis of the optical system is performed using a Fabry-Perot interferometer model with a lossy cavity formed between the cantilever and the GWG and an analytical expression is derived for the optical power transmission as a function of the cantilever deflection which corresponds to cavity width variation. The intensity transmission of the optical system for different cantilever deflections estimated using the analytical expression captures the essential features exhibited by a FDTD numerical model.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

We have investigated the validity of percolation model, which is quite often invoked to explain the metal-insulator transition in sodium tungsten bronzes, NaxWO(3) by photoelectron spectromicroscopy. The spatially resolved direct spectromicroscopic probing on both the insulating and metallic phases of high quality single crystals of NaxWO(3) reveals the absence of any microscopic inhomogeneities embedded in the system within the experimental limit. Neither any metallic domains in the insulating host nor any insulating domains in the metallic host have been found to support the validity of percolation model to explain the metal-insulator transition in NaxWO(3). The possible origin of insulating phase in NaxWO(3) is due to the Anderson localization of all the states near E-F. The localization occurs because of the strong disorder arising from random distribution of Na+ ions in the WO3 lattice.