223 resultados para SQL query equivalence
Corresponding States Correlations For Sound-Velocity In Saturated Cryogenic Liquids And Refrigerants
Flow And Heat-Transfer Over An Upstream Moving Wall With A Magnetic-Field And A Parallel Free Stream
Resumo:
The flow and heat transfer over an upstream moving non-isothermal wall with a parallel free stream have been considered. The magnetic field has been applied in the free stream parallel to the wall and the effect of induced magnetic field has been included in the analysis. The boundary layer equations governing the steady incompressible electrically conducting fluid flow have been solved numerically using a shooting method. This problem is interesting because a solution exists only when the ratio of the wall velocity does not exceed a certain critical value and this critical value depends on the magnetic field and magnetic Prandtl number. Also dual solutions exist for a certain range of wall velocity.
Resumo:
This is a continuation of the earlier work (Publ. Res. Inst. Math. Sci. 45 (2009) 745-785) to characterize unitary stationary independent increment Gaussian processes. The earlier assumption of uniform continuity is replaced by weak continuity and with technical assumptions on the domain of the generator, unitary equivalence of the process to the solution of an appropriate Hudson-Parthasarathy equation is proved.
Resumo:
An attempt to systematically investigate the effects of microstructural parameters in influencing the resistance to fatigue crack growth (FCG) in the near-threshold region under three different temper levels has been made for a high strength low alloy steel to observe in general, widely different trends in the dependence of both the total threshold stress intensity range, DELTA-K(th) and the intrinsic or effective threshold stress intensity range, DELTA-K(eff-th) on the prior austenitic grain size (PAGS). While a low strain hardening microstructure obtained by tempering at high temperatures exhibited strong dependence of DELTA-K(th) on the PAGS by virtue of strong interactions of crack tip slip with the grain boundary, a high strength, high strain hardening microstructure as a result of tempering at low temperature exhibited a weak dependence. The lack of a systematic variation of the near-threshold parameters with respect to grain size in temper embrittled structures appears to be related to the wide variations in the amount of intergranular fracture near threshold. Crack closure, to some extent provides a basis on which the increases in DELTA-K(th) at larger grain sizes can be rationalised. This study, in addition, provides a wide perspective on the relative roles of slip behaviour embrittlement and environment that result in the different trends observed in the grain size dependence of near-threshold fatigue parameters, based on which the inconsistency in the results reported in the literature can be clearly understood. Assessment of fracture modes through extensive fractography revealed that prior austenitic grain boundaries are effective barriers to cyclic crack growth compared to martensitic packet boundaries, especially at low stress intensities. Fracture morphologies comprising of low energy flat transgranular fracture can occur close to threshold depending on the combinations of strain hardening behaviour, yield strength and embrittlement effects. A detailed consideration is given to the discussion of cyclic stress strain behaviour, embrittlement and environmental effects and the implications of these phenomena on the crack growth behaviour near threshold.
Resumo:
The present work is aimed at evaluating an alternative moulding system, namely, sodium aluminate bonded zircon sand mould and assess its suitability in relation to the much studied sodium silicate bonded zircon sand moulding system. It is described in the study presented here that with regard to metal - mould reaction, sodium aluminate bonded zircon sand mould system is a superior viable system as compared to sodium silicate bonded zircon moulding system at mould firing temperatures of 873 - 1473 K.
Resumo:
Ability of the beta-subunit of human chorionic gonadotropin to inhibit the response to lutropin (luteinizing hormone, LH) was tested in the immature rat ovarian system and pregnant-mare-serum-gonadotropin-primed rat ovarian system with progesterone production being used as the response. Human chorionic gonadotropin beta-subunit was found to inhibit human and ovine lutropin-stimulated progesterone production. At a constant dose of lutropin, inhibition was dependent on the concentration of beta-subunit. When concentration of the beta-subunit was kept constant at 5.0 microgram/ml and the concentration of lutropin was varied, the inhibition was maximum at the saturating concentration of the native hormone. The alpha-subunit of the human chorionic gonadotropin did not inhibit the response to lutropin. The lutropin/beta-subunit ratio required to produce an inhibition of response was much lower than that required to bring about an observable inhibition of binding.
Resumo:
In this paper, a dual of a given linear fractional program is defined and the weak, direct and converse duality theorems are proved. Both the primal and the dual are linear fractional programs. This duality theory leads to necessary and sufficient conditions for the optimality of a given feasible solution. A unmerical example is presented to illustrate the theory in this connection. The equivalence of Charnes and Cooper dual and Dinkelbach’s parametric dual of a linear fractional program is also established.
Resumo:
Clustering is a process of partitioning a given set of patterns into meaningful groups. The clustering process can be viewed as consisting of the following three phases: (i) feature selection phase, (ii) classification phase, and (iii) description generation phase. Conventional clustering algorithms implicitly use knowledge about the clustering environment to a large extent in the feature selection phase. This reduces the need for the environmental knowledge in the remaining two phases, permitting the usage of simple numerical measure of similarity in the classification phase. Conceptual clustering algorithms proposed by Michalski and Stepp [IEEE Trans. PAMI, PAMI-5, 396–410 (1983)] and Stepp and Michalski [Artif. Intell., pp. 43–69 (1986)] make use of the knowledge about the clustering environment in the form of a set of predefined concepts to compute the conceptual cohesiveness during the classification phase. Michalski and Stepp [IEEE Trans. PAMI, PAMI-5, 396–410 (1983)] have argued that the results obtained with the conceptual clustering algorithms are superior to conventional methods of numerical classification. However, this claim was not supported by the experimental results obtained by Dale [IEEE Trans. PAMI, PAMI-7, 241–244 (1985)]. In this paper a theoretical framework, based on an intuitively appealing set of axioms, is developed to characterize the equivalence between the conceptual clustering and conventional clustering. In other words, it is shown that any classification obtained using conceptual clustering can also be obtained using conventional clustering and vice versa.
Resumo:
The set of attainable laws of the joint state-control process of a controlled diffusion is analyzed from a convex analytic viewpoint. Various equivalence relations depending on one-dimensional marginals thereof are defined on this set and the corresponding equivalence classes are studied.
Resumo:
It is shown that the asymmetric chiral gauging of the WZW models give rise to consistent string backgrounds. The target space structure of the chiral gauged SL(2,R) WZW model, with the gauging of subgroups SO(1, 1) in the left and U(1) in the right moving sector, is obtained. We then analyze the symmetries of the background and show the presence of a non-trivial isometry in the canonical parametrization of the WZW model. Using these results, the equivalence of the asymmetric models with the symmetric ones is demonstrated.